• Contrasting responses to selection in class I and class IIα major histocompatibility-linked markers in salmon

      Consuegra, S; De Eyto, E; McGinnity, P; Stet, R.J.M.; Jordan, W.C. (Nature Publishing Group, 2011-08)
      Comparison of levels and patterns of genetic variation in natural populations either across loci or against neutral expectation can yield insight into locus-specific differences in the strength and direction of evolutionary forces. We used both approaches to test the hypotheses on patterns of selection on major histocompatibility (MH)-linked markers. We performed temporal analyses of class I and class IIα MH-linked markers and eight microsatellite loci in two Atlantic salmon populations in Ireland on two temporal scales: over six decades and 9 years in the rivers Burrishoole and Delphi, respectively. We also compared contemporary Burrishoole and Delphi samples with nearby populations for the same loci. On comparing patterns of temporal and spatial differentiation among classes of loci, the class IIα MH-linked marker was consistently identified as an outlier compared with patterns at the other microsatellite loci or neutral expectation. We found higher levels of temporal and spatial heterogeneity in heterozygosity (but not in allelic richness) for the class IIα MH-linked marker compared with microsatellites. Tests on both within- and among-population differentiation are consistent with directional selection acting on the class IIα-linked marker in both temporal and spatial comparisons, but only in temporal comparisons for the class I-linked marker. Our results indicate a complex pattern of selection on MH-linked markers in natural populations of Atlantic salmon. These findings highlight the importance of considering selection on MH-linked markers when using these markers for management and conservation purposes.
    • MHC-mediated spatial distribution in brown trout (Salmo trutta) fry

      O'Farrell, Brian; Benzie, John A. H.; McGinnity, Philip; Carlsson, Jens; De Eyto, Elvira; Dillane, Eileen; Graham, Conor; Coughlan, James; Cross, Tom (Nature Publishing Group, 2011-09)
      Major histocompatibility complex (MHC) class I-linked microsatellite data and parental assignment data for a group of wild brown trout (Salmo trutta L.) provide evidence of closer spatial aggregation among fry sharing greater numbers of MHC class I alleles under natural conditions. This result confirms predictions from laboratory experiments demonstrating a hierarchical preference for association of fry sharing MHC alleles. Full-siblings emerge from the same nest (redd), and a passive kin association pattern arising from limited dispersal from the nest (redd effect) would predict that all such pairs would have a similar distribution. However, this study demonstrates a strong, significant trend for reduced distance between pairs of full-sibling fry sharing more MHC class I alleles reflecting their closer aggregation (no alleles shared, 311.5±(s.e.)21.03m; one allele shared, 222.2±14.49m; two alleles shared, 124.9±23.88m; P<0.0001). A significant trend for closer aggregation among fry sharing more MHC class I alleles was also observed in fry pairs, which were known to have different mothers and were otherwise unrelated (ML-r=0) (no alleles: 457.6±3.58m; one allele (422.4±3.86 m); two alleles (381.7±10.72 m); P<0.0001). These pairs are expected to have emerged from different redds and a passive association would then be unlikely. These data suggest that sharing MHC class I alleles has a role in maintaining kin association among full-siblings after emergence. This study demonstrates a pattern consistent with MHC-mediated kin association in the wild for the first time.