• A test battery approach to the ecotoxicological evaluation of cadmium and copper employing a battery of marine bioassays

      Macken, A; Giltrap, M; Ryall, K; Foley, B; McGovern, E; McHugh, B; Davoren, M (Springer, 2009)
      Heavy metals are ubiquitous contaminants of the marine environment and can accumulate and persist in sediments. The toxicity of metal contaminants in sediments to organisms is dependent on the bioavailability of the metals in both the water and sediment phases and the sensitivity of the organism to the metal exposure. This study investigated the effects of two metal contaminants of concern (CdCl2 and CuCl2) on a battery of marine bioassays employed for sediment assessment. Cadmium, a known carcinogen and widespread marine pollutant, was found to be the least toxic of the two assayed metals in all in vivo tests. However CdCl2 was found to be more toxic to the fish cell lines PLHC-1 and RTG-2 than CuCl2. Tisbe battagliai was the most sensitive species to both metals and the Microtox® and cell lines were the least sensitive (cadmium was found to be three orders of magnitude less toxic to Vibrio fischeri than to T. battagliai). The sensitivity of Tetraselmis suecica to the two metals varied greatly. Marine microalgae are among the organisms that can tolerate higher levels of cadmium. This hypothesis is demonstrated in this study where it was not possible to derive an EC50 value for CdCl2 and the marine prasinophyte, T. suecica. Conversely, CuCl2 was observed to be highly toxic to the marine alga, EC50 of 1.19 mg l-1. The genotoxic effect of Cu on the marine phytoplankton was evaluated using the Comet assay. Copper concentrations ranging from 0.25 to 2.50 mg l-1 were used to evaluate the effects. DNA damage was measured as percent number of comets and normal cells. There was no significant DNA damage observed at any concentration of CuCl2 tested and no correlation with growth inhibition and genetic damage was found.
    • Toxicological risks to humans of toxaphene residues in fish

      Leonards, P.E.G.; Besselink, H.; Klungsøyr, J.; McHugh, B.; Nixon, E.; Rimkus, G.G.; Brouwer, A.; de Boer, J. (Wiley, 2011)
      A revised risk assessment for toxaphene was developed, based on the assumption that fish consumers are only exposed to toxaphene residues that differ substantially from technical toxaphene due to environmental degradation and metabolism. In vitro studies confirmed that both technical toxaphene and degraded toxaphene inhibit gap junctional intercellular communication that correlates with the mechanistic potential to cause tumour promotion. In vivo rat studies established the NOAEL for degraded and technical toxaphene at the highest dose tested in the bioassay. Toxaphene residue intakes from European fishery products were estimated and compared to the provisional tolerable daily intakes (TDIs) from various regulatory agencies including Canada, the United States, Germany. The estimated intake was also compared to a new calculated provisional MATT pTDI. The MATT pTDI is based upon new toxicological information (in vivo rat studies) developed on a model for environmental toxaphene residues rather than technical toxaphene. A MATT pTDI (1.08 mg total toxaphene for a person of 60 kg) for tumour promotion potency was adopted for use in Europe and is hitherto referred to as the MATT pTDI. These new data result in a better estimate of safety and a higher TDI than previously used. Based on realistic fish consumption data and recent baseline concentration data of toxaphene in European fishery products the toxaphene intake for the consumers of Germany, Ireland, Norway and The Netherlands was estimated. For an average adult fish consumer the average daily intake of toxaphene was estimated to be 1.2 µg, and 0.4, 0.5, and 0.2 µg for the consumers of Norway, Germany, Ireland, and The Netherlands, respectively. The toxaphene intake of these average fish consumers was far below the MATT pTDI of 1.08 mg/60 kg body weight. In conclusion, based on the most relevant toxicological studies and the most realistic estimates of fish consumption and recent concentrations of toxaphene in European fishery products, adverse health effects are unlikely for the average European consumer of fishery products. In no case is the MATT pTDI exceeded.
    • Utilising caging techniques to investigate metal assimilation in Nucella lapillus, Mytilus edulis and Crassostrea gigas at three Irish coastal locations

      Giltrap, M.; Macken, A.; Davoren, M.; McGovern, E.; Foley, B.; Larsen, M.; White, J.; McHugh, B. (Elsevier, 2013)
      Pollution by metals has been of increasing concern for a number of decades but at present, the mechanism of metal accumulation in sentinel species is not fully understood and further studies are required for environmental risk assessment of metals in aquatic environments. The use of caging techniques has proven to be useful for assessment of water quality in coastal and estuarine environments. This study investigates the application of caging techniques for monitoring uptake of 20 elements [Li, Na, Mg, Al, P, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, As, Sb, Pb, Hg, Cd and Zn] in three marine species namely Nucella lapillus, Mytilus edulis and Crassostrea gigas. Stable isotopes were used to determine predatory effects and also used for modelling metal uptake in test species and to track nutrient assimilation. Metal levels were monitored at three different coastal locations, namely Dublin Bay, Dunmore East and Omey Island over 18 weeks. Significant differences in concentrations of Mn, Co and Zn between mussels and oysters were found. Correlations between cadmium levels in N. lapillus and δ13C and δ15N suggest dietary influences in Cd uptake. Levels of Zn were highest in C. gigas compared to the other two species and levels of Zn were most elevated at the Dunmore East site. Copper levels were more elevated in all test species at both Dublin Bay and Dunmore East. Mercury was raised in all species at Dunmore East compared to the other two sites. Biotic accumulation of metals in the test species demonstrates that caging techniques can provide a valid tool for biomonitoring in metal impacted areas.