• Assessment of biomarkers in Mytilus edulis to determine Good Environmental Status for implementation of MSFD in Ireland

      Giltrap, M.; Ronan, J.; Hardenberg, S.; Parkes, G.; McHugh, B.; McGovern, E.; Wilson, J.G. (Elsevier, 2013)
      Candidate OSPAR/ICES recommended biomarkers at the level of the individual in Mytilus edulis for determination of good environmental status for MSFD were evaluated against contaminant levels at sites around Ireland. The sites chosen ranged from moderate to low pollution levels, but the actual ranking of the sites varied according to the contaminant levels present. At the most contaminated site, Cork, 4 out of 16 contaminants exceeded the EAC, while at Shannon, no EACs were exceeded. The SOS assay suggested that Cork was the healthiest site with a LT50 of 17.6 days, while SOS for Shannon was 15.6 days. Likewise, condition factors varied among sites and did not always correspond to contaminant-based status. There may be uncertainty in assigning status around the not good:good boundary. This raises potential difficulties not only in the biomarker/contaminant load relationship but also in the reliability of the biomarkers themselves and hence barriers meeting compliance levels.
    • A sensitive liquid chromatography/tandem mass spectrometry method for the determination of natural and synthetic steroid estrogens in seawater and marine biota, with a focus on proposed Water Framework Directive Environmental Quality Standards

      Ronan, J.; McHugh, B. (Wiley, 2013)
      RATIONALE: Trace levels of natural and synthetic steroid estrogens estrone (E1), 17b-estradiol (E2) and 17a-ethynyl estradiol (EE2) have been demonstrated to exert adverse effects in exposed organisms. E2 and EE2 have been proposed for inclusion in the Water Framework Directive (WFD) list of priority pollutants; however, the detection and accurate quantification of these compounds provide significant challenges, due to the low detection limits required. METHODS: A sensitive method combining ultrasonication, solid-phase extraction (SPE) and liquid chromatography/tandem mass spectrometry, with electrospray ionisation in negative mode (LC/ESI-MS/MS), capable of determining E1, E2 and EE2 at concentrations between 0.07 and 60 ng/L for seawater and between 0.4 and 200 ng/g wet weight in Mytilus spp. is reported. Recoveries at the limit of quantification (LOQ) ranged from 95 to 102% and 88 to 100% for water and tissue, respectively. Salinity (12 to 35%) and typical marine particulate matter loadings (between 10 and 100 mg/L) were not found to affect analyte recoveries. RESULTS: The first detection of E1 by LC/MS/MS in Irish marine waters (Dublin Bay, at 0.76 ng/L) is reported. Steroids were not detected in Galway Bay, or in any mussel samples from Dublin, Galway and Clare. The level of E2 detected in the dissolved water phase was below the proposed WFD Environmental Quality Standard (EQS) in other surface waters. CONCLUSIONS: The proposed method is suitable for the detection of E1, E2 and EE2 at biologically relevant concentrations and, due to the specificity offered, is not subject to potential interferences from endogenous E1 and E2 which often complicate the interpretation of estrogenic biomarker assays.