Marine Chemistry conducts monitoring and research on Marine Pollutants, Contaminants in Seafood, Seawater Chemistry and Ocean Acidification.

Recent Submissions

  • Decreased Performance of Rainbow Trout Oncorhynchus mykiss Emergence Behaviors Following Embryonic Exposure to Benzo[a]pyrene

    Ostrander, G.K.; Anderson, J.J. (United States Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 1990)
    The sublethal effects induced by a model carcinogen and environmental contaminant on salmonid emergence behaviors have been studied. Rainbow trout embryos were exposed for 24 hours to 25 IAg/mL of benzo[a)pyrene 1 week prior to hatching. Exposures occurred during the late organogenesis period of development and allowed assessment of how a single embryonic exposure might affect emergence behaviors nearly 6 weeks later. Though no differences in numbers of alevins successfully emerging were observed, a significant decrease was noted in performance of the upstream orientation behaviors characteristic ofemergence among wild individuals.These findings are discussed in terms ofa model describing the role of upstream swimming behavior after emergence.
  • The oceanography of southwest Ireland: current research activities

    Raine, R.; Whelan, D.; Conway, N.; Joyce, B.; Moloney, M.; Hoey, M.J.; Patching, J.W. (Fisheries Research Centre, 1993)
    The coastal waters of Ireland are rich in physical features affecting both chemistry and biology. Amongst these are the tidal fronts of the Irish Sea (Le Fevre, 1986) and the Irish Shelf Front on the Atlantic coast lying along the 200m iso bath (Huang et al., 1991). Recently, an upwelling system has been described in the vicinity of the Fastnet Rock (Roden, 1986; Raine et al., 1990). Coastal upwelling systems are ecologically very important and are generally extremely productive, as nutrients brought up to the sea surface can stimulate extensive phytoplankton growth. This paper describes further satellite and ship-based investigations which are currently being carried out to examine the mechanisms driving the upwelling system and its effect on local ecology.
  • Stable isotope analysis of baleen reveals resource partitioning among sympatric rorquals and population structure in fin whales

    Ryan, C.; McHugh, B.; Trueman, C.N.; Sabin, R.; Deaville, R.; Harrod, C.; Berrow, S.D.; O'Connor, I. (Inter-Research, 2013)
    Stable isotope analysis is a useful tool for investigating diet, migrations and niche in ecological communities by tracing energy through food-webs. In this study, the stable isotopic composition of carbon and nitrogen in keratin was measured at growth increments of baleen plates from 3 sympatric species of rorquals (Balaenoptera acutrostrata, B. physalus and Megaptera novaeangliae), which died between 1985 and 2010 in Irish and contiguous waters. Bivariate ellipses were used to plot isotopic niches and standard ellipse area parameters were estimated via Bayesian inference using the SIBER routine in the SIAR package in R. Evidence of resource partitioning was thus found among fin, humpback and minke whales using isotopic niches. Highest δ15N values were found in minke whales followed by humpback, and fin whales. Comparison between Northeast Atlantic (Irish/UK and Biscayan) and Mediterranean fin whale isotopic niches support the current International Whaling Commission stock assessment of an isolated Mediterranean population. Significantly larger niche area and higher overall δ 15N and δ 13C values found in fin whales from Irish/UK waters compared to those sampled in adjacent regions (Bay of Biscay and Mediterranean) suggest inshore foraging that may be unique to fin whales in Ireland and the UK. Isotopic profiles support spatial overlap but different foraging strategies between fin whales sampled in Ireland/UK and the Bay of Biscay. Stable isotope analysis of baleen could provide an additional means for identifying ecological units, thus supporting more effective management for the conservation of baleen whales.
  • A sensitive liquid chromatography/tandem mass spectrometry method for the determination of natural and synthetic steroid estrogens in seawater and marine biota, with a focus on proposed Water Framework Directive Environmental Quality Standards

    Ronan, J.; McHugh, B. (Wiley, 2013)
    RATIONALE: Trace levels of natural and synthetic steroid estrogens estrone (E1), 17b-estradiol (E2) and 17a-ethynyl estradiol (EE2) have been demonstrated to exert adverse effects in exposed organisms. E2 and EE2 have been proposed for inclusion in the Water Framework Directive (WFD) list of priority pollutants; however, the detection and accurate quantification of these compounds provide significant challenges, due to the low detection limits required. METHODS: A sensitive method combining ultrasonication, solid-phase extraction (SPE) and liquid chromatography/tandem mass spectrometry, with electrospray ionisation in negative mode (LC/ESI-MS/MS), capable of determining E1, E2 and EE2 at concentrations between 0.07 and 60 ng/L for seawater and between 0.4 and 200 ng/g wet weight in Mytilus spp. is reported. Recoveries at the limit of quantification (LOQ) ranged from 95 to 102% and 88 to 100% for water and tissue, respectively. Salinity (12 to 35%) and typical marine particulate matter loadings (between 10 and 100 mg/L) were not found to affect analyte recoveries. RESULTS: The first detection of E1 by LC/MS/MS in Irish marine waters (Dublin Bay, at 0.76 ng/L) is reported. Steroids were not detected in Galway Bay, or in any mussel samples from Dublin, Galway and Clare. The level of E2 detected in the dissolved water phase was below the proposed WFD Environmental Quality Standard (EQS) in other surface waters. CONCLUSIONS: The proposed method is suitable for the detection of E1, E2 and EE2 at biologically relevant concentrations and, due to the specificity offered, is not subject to potential interferences from endogenous E1 and E2 which often complicate the interpretation of estrogenic biomarker assays.
  • LC-UV and LC-MS methods for the determination of domoic acid

    Hess, P.; Morris, S.; Stobo, L.A.; Brown, N.A.; McEvoy, J.D.G.; Kennedy, G.; Young, P.B.; Slattery, D.; McGovern, E.; McMahon, T.; et al. (Elsevier, 2005)
    Under European legislation, domoic acid (DA), the main constituent of amnesic shellfish poisoning, is monitored to protect the shellfish consumer. To ensure comparability amongst analytical data, it was deemed necessary to undertake performance assessments of the methods conducted by monitoring laboratories of the United Kingdom and Ireland. In phase I of a two-phase inter-comparison, three laboratories used high-performance liquid chromatography and ultraviolet detection (HPLC-UV). Concentration data for a DA standard solution, a crude extract of whole scallops and a scallop-homogenate fell within internationally accepted limits, demonstrating good agreement for these matrices. Between-laboratory analyses of a scallop gonad showed a higher variation (>16%). In phase II, a second gonad homogenate containing DA one order of magnitude higher in concentration gave results acceptable to internationally set criteria. The efficiency of the strong anion-exchange cartridges used in sample-extract clean-up should be monitored as part of a laboratory quality control system. From a recovery study, it is suggested that recovery correction should also be applied. There was no difference in the quantitation of DA in standard solutions or shellfish using either LC-UV or LC with mass spectrometric (MS) detection, and between-laboratory MS data for a gonad homogenate were also equivalent. Variations of the published method practised by the monitoring laboratories were found not to compromise results, thus demonstrating an acceptable degree of ruggedness, as well as comparability between the participants.
  • Utilising caging techniques to investigate metal assimilation in Nucella lapillus, Mytilus edulis and Crassostrea gigas at three Irish coastal locations

    Giltrap, M.; Macken, A.; Davoren, M.; McGovern, E.; Foley, B.; Larsen, M.; White, J.; McHugh, B. (Elsevier, 2013)
    Pollution by metals has been of increasing concern for a number of decades but at present, the mechanism of metal accumulation in sentinel species is not fully understood and further studies are required for environmental risk assessment of metals in aquatic environments. The use of caging techniques has proven to be useful for assessment of water quality in coastal and estuarine environments. This study investigates the application of caging techniques for monitoring uptake of 20 elements [Li, Na, Mg, Al, P, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, As, Sb, Pb, Hg, Cd and Zn] in three marine species namely Nucella lapillus, Mytilus edulis and Crassostrea gigas. Stable isotopes were used to determine predatory effects and also used for modelling metal uptake in test species and to track nutrient assimilation. Metal levels were monitored at three different coastal locations, namely Dublin Bay, Dunmore East and Omey Island over 18 weeks. Significant differences in concentrations of Mn, Co and Zn between mussels and oysters were found. Correlations between cadmium levels in N. lapillus and δ13C and δ15N suggest dietary influences in Cd uptake. Levels of Zn were highest in C. gigas compared to the other two species and levels of Zn were most elevated at the Dunmore East site. Copper levels were more elevated in all test species at both Dublin Bay and Dunmore East. Mercury was raised in all species at Dunmore East compared to the other two sites. Biotic accumulation of metals in the test species demonstrates that caging techniques can provide a valid tool for biomonitoring in metal impacted areas.
  • Application of congener based multi-matrix profiling techniques to identify potential PCDD/F sources in environmental samples from the Burrishoole Catchment in the West of Ireland

    White, P.; McHugh, B.; Poole, R.; McGovern, E.; White, J.; Behan, P.; Foley, B.; Covaci, A. (Elsevier, 2014)
    Homologue and congener profiles of PCDD/Fs in eels, passive sampler and sediment extracts from the Burrishoole, a rural upland catchment on the western Irish seaboard were compared with potential PCDD sources. ΣPCDD/F levels in eels ranged from 2.9 to 25.9 pg g−1 wet weight, which are elevated compared to other Irish locations. The OCDD congener dominated the pattern of ΣPCDD/Fs in all matrices from Burrishoole. Passive samplers were successfully deployed to identify for the first time the presence in the water column of PCDD/Fs and dimethoxylated octachlorodiphenyl ether (diMeOoctaCDE), impurities found in pentachlorophenol (PCP) production. Principal component analysis (PCA) identified similarities between PCDD/F profiles in technical PCP mixtures and environmental samples from the Burrishoole region. Results strongly suggest residual PCDD contamination associated with historic local use of a dioxin contaminated product in the catchment area, with pentachlorophenol a strong candidate.
  • Biomarkers: are realism and control mutually exclusive in integrated pollution assessment?

    Wilson, J.G.; McHugh, B.; Giltrap, M. (Elsevier, 2014)
    The conventional view of pollution monitoring is that any choice is a trade-off between realism and precision, as the control over confounding variables decreases with the increasing degree of organization of the test system. Dublin Bay is subject to considerable anthropogenic pressures and there have been many attempts to quantify the status of the system at organizational levels from DNA strand breaks (Comet) to the system itself (Ecological Network analysis, ENA). Using Dublin Bay as an example, the data show there was considerable variability at all levels of organization. At intracellular level, Lysosome Membrane Stability (LMS, assessed by Neutral Red Retention, NRR) varied almost 4-fold with season and individual condition, while the community level AZTI Marine biotic Index (AMBI) had a similar range within a single, supposedly homogeneous, site. Overall, there was no evidence that biomarkers of the lower levels of organisation reduced the variability of the measure, despite the extra control over influencing variables, nor was there any evidence that variability was additive at higher levels of organisation. This poses problems for management, especially given the fixed limits of Ecological Quality Standards (EQSs). Clearly while the integrated approach to pollution monitoring does offer the potential to link effects across the organizational range, it should also be possible to improve their capability by widening the database for reference values, particularly at the higher level of organization, and by process models, including the confounding variables found in the field, for those at lower level.
  • Toxicological risks to humans of toxaphene residues in fish

    Leonards, P.E.G.; Besselink, H.; Klungsøyr, J.; McHugh, B.; Nixon, E.; Rimkus, G.G.; Brouwer, A.; de Boer, J. (Wiley, 2011)
    A revised risk assessment for toxaphene was developed, based on the assumption that fish consumers are only exposed to toxaphene residues that differ substantially from technical toxaphene due to environmental degradation and metabolism. In vitro studies confirmed that both technical toxaphene and degraded toxaphene inhibit gap junctional intercellular communication that correlates with the mechanistic potential to cause tumour promotion. In vivo rat studies established the NOAEL for degraded and technical toxaphene at the highest dose tested in the bioassay. Toxaphene residue intakes from European fishery products were estimated and compared to the provisional tolerable daily intakes (TDIs) from various regulatory agencies including Canada, the United States, Germany. The estimated intake was also compared to a new calculated provisional MATT pTDI. The MATT pTDI is based upon new toxicological information (in vivo rat studies) developed on a model for environmental toxaphene residues rather than technical toxaphene. A MATT pTDI (1.08 mg total toxaphene for a person of 60 kg) for tumour promotion potency was adopted for use in Europe and is hitherto referred to as the MATT pTDI. These new data result in a better estimate of safety and a higher TDI than previously used. Based on realistic fish consumption data and recent baseline concentration data of toxaphene in European fishery products the toxaphene intake for the consumers of Germany, Ireland, Norway and The Netherlands was estimated. For an average adult fish consumer the average daily intake of toxaphene was estimated to be 1.2 µg, and 0.4, 0.5, and 0.2 µg for the consumers of Norway, Germany, Ireland, and The Netherlands, respectively. The toxaphene intake of these average fish consumers was far below the MATT pTDI of 1.08 mg/60 kg body weight. In conclusion, based on the most relevant toxicological studies and the most realistic estimates of fish consumption and recent concentrations of toxaphene in European fishery products, adverse health effects are unlikely for the average European consumer of fishery products. In no case is the MATT pTDI exceeded.
  • Mercury assessment in the marine environment: assessment criteria comparison (EAC/EQS) for mercury

    OSPAR Commission; McHugh, B.; Berbee, R.; Farmer, E.; Fryer, R.; Green, N.; Larsen, M.M.; Webster, L.; Lepom, P.; McGovern, E.; et al. (OSPAR Commission, 2016)
    Mercury is known for its worldwide environmental impact. It is addressed by several existing international agreements addressing atmospheric emissions (CLRTAP), the marine environment (OSPAR, HELCOM, Barcelona, Bucharest), waste (Basel), and export of chemicals (Rotterdam). It can be brought into the biosphere by humans by two different mechanisms: 1) intentional extraction and use, and 2) as a natural constituent in other materials. Mercury is extremely toxic to both man and biota and can be transformed within the aquatic environment into more toxic organic compounds (e.g. methyl mercury). A main pathway of mercury to the sea is atmospheric and it can be carried long distances from its source. The primary risk to the general population is exposure to methylmercury via ingestion of aquatic foods. OSPAR measures and subsequent EU measures regulate the main industrial sources for mercury releases to the environment. A suite of OSPAR measures control mercury emissions, discharges and sources. OSPAR has promoted actions in other international forums, especially the EU, e.g. call for actions to prevent pollution from the disposal of large amounts of pure and waste mercury arising from the closure or conversion of mercury cell chlor-alkali plants and for control measures on the use and marketing of mercury in various products.
  • Environmental occurrence, analysis, and toxicology of toxaphene compounds

    de Geus, H.-J.; Besselink, H.; Brouwer, A.; Klungsøyr, J.; McHugh, B.; Nixon, E.; Rimkus, G.G.; Wester, P.G.; de Boer, J. (1999)
    Toxaphene production, in quantities similar to those of polychlorinated biphenyls, has resulted in high toxaphene levels in fish from the Great Lakes and in Arctic marine mammals (up to 10 and 16 microg g-1 lipid). Because of the large variabiliity in total toxaphene data, few reliable conclusions can be drawn about trends or geographic differences in toxaphene concentrations. New developments in mass spectrometric detection using either negative chemical ionization or electron impact modes as well as in multidimensional gas chromatography have recently led researchers to suggest congener-specific approaches. Several nomenclature systems have been developed for toxaphene compounds. Although all systems have specific advantages and limitations, it is suggested that an international body, such as the International Union of Pure and Applied Chemistry, make an attempt to obtain uniformity in the literature. Toxicologic information on individual chlorobornanes is scarce, but some reports have recently appeared. Neurotoxic effects of toxaphene exposure such as those on behavior and learning have been reported. Technical toxaphene and some individual congeners were found to be weakly estrogenic in in vitro test systems; no evidence for endocrine effects in vivo has been reported. In vitro studies show technical toxaphene and toxaphene congeners to be mutagenic. However, in vivo studies have not shown genotoxicity; therefore, a nongenotoxic mechanism is proposed. Nevertheless, toxaphene is believed to present a potential carcinogenic risk to humans. Until now, only Germany has established a legal tolerance level for toxaphene--0.1 mg kg-1 wet weight for fish.
  • In vitro and in vivo tumor promoting potency of technical toxaphene, UV-irradiated toxaphene, and biotransformed toxaphene

    Besselink, H.T.; Nixon, E.; McHugh, B.; Klungsøyr, J.; Brouwer, A. (2000)
    Toxaphene, a complex mixture of polychlorinated camphenes, was first introduced in 1945 by Hercules Co. as Hercules 3965. Until the mid 1980s, it was mass produced and widely used as an insecticide, and was also used as a piscicide to control rough fish in various water systems. The lipophilic, persistent, and volatile nature of toxaphene has contributed to its global dispersion throughout the fresh water and marine environment. In addition to bioaccumulation in biota inhabiting these regions, it is also been detected in humans. Human exposure mainly occurs through the consumption of toxaphene contaminated fish. Information on the carcinogenicity and general toxicology of weathered and biotransformed TT would be of major interest. To mimic the weathered toxaphene found in fish, we developed a so-called 'realistic exposure' procedure for toxaphene. This procedure makes use of cod that were exposed to TT. Toxaphene residues that were extracted from cod liver (CLE), were then used in in vitro and in vivo studies to obtain information on its tumor promoting potency. Besides CLE, we also studied the tumor promoting properties of UV-irradiated toxaphene (UVT) and TT.
  • Polychlorinated Biphenyls and Organochlorines in By-Caught Harbour Porpoises Phocoena phocoena and Common Dolphins Delphinus delphis from Irish Coastal Waters

    Smyth, M.; Berrow, S.; Nixon, E.; Rogan, E. (Royal Irish Academy, 2000)
    Concentrations of 11 organochlorine (OC) pesticides and 10 individual polychlorinated biphenyls (PCB) in blubber and liver from 12 harbour porpoise Phocoena phocoena and eight common dolphins Delphinus delphis incidentally caught in fishing nets in Irish waters are presented. Female harbour porpoises had highest concentrations of OC in blubber and male common dolphins in liver. Harbour porpoises had higher mean concentrations of lindane (121-154 ng/g extractable lipid), dieldrin (116-121 ng/g) and  BHC (54-128 ng/g) but common dolphins had greater overall concentrations of DDT (9444-3998 ng/g). The predominant DDT metabolite was pp-DDE and for the chlordanes was t-nonachlor. Concentrations of ICES 7 PCB (liver-blubber) were similar in both species (4075-7999 ng/g in harbour porpoise and 4076-8945 in common dolphins). The sum of ICES 7 PCB in porpoises ranged from 3041-12270 ng/g extractable lipid in the blubber of females and from 2911-10429 ng/g in males and 798-11074 ng/g in the blubber of female common dolphins and 1555-15883 ng/g in males. Contaminant levels were generally similar to those reported from Scotland but lower than reported from Scandinavia. Ratios of DDT to DDE suggests that there are limited new sources of DDT into the Irish marine environment. These results provide a baseline for monitoring of persistent pollutants in the Irish marine environment.
  • Survey of toxaphene concentrations in fish from European waters

    McHugh, B.; Nixon, E.; Klungsoyr, J.; Besselink, H.; Brouwer, A.; Rimkus, G.; Leonards, P.; de Boer, J. (2000)
    Toxaphene, a suspected carcinogen, is a broad spectrum chlorinated pesticide. The objective of this study was to provide information on the toxicological risks posed by toxaphene to the consumer of fish from European waters. The levels of 3 toxaphene congeners in various fish species from different geographical locations were determined. These data were then used to provide information on the exposure of toxaphene to the consumer of fish.
  • Developments in analysis and toxicology of toxaphene compounds

    de Geus, H-J.; Besselink, H.; Brouwer, A.; Klungsøyr, J.; MacGovern, E.; MacHugh, B.; Nixon, E.; Rimkus, G.G.; Wester, P.G.; de Boer, J. (1998)
    Over the last 50 years toxaphene has been produced and used as a pesticide extensively. The US Environmental Protection Agency banned it in 1982. In the early 1990s the presence of toxaphene in marine fish in Europe caused concern with regard to human health in relation with consumption. This paper gives a brief overview of recent developments in the analytical and toxicological research on toxaphene.
  • MATT: Monitoring, Analysis and Toxicity of Toxaphene: improvement of analytical methods

    de Boer, J.; Klungsøyr, J.; Nesje, G.; Meier, S.; McHugh, B.; Nixon, E.; Rimkus, G.G. (1999)
    The European Research Project MATT (Investigation into the Monitoring, Analysis and Toxicity of Toxaphene) started in 1997 and had the objective to provide information on toxicological risks to the consumer of toxaphene residues in fish from European waters. This report includes information on the analytical block of the project, which comprised three studies.
  • Assessment of biomarkers in Mytilus edulis to determine Good Environmental Status for implementation of MSFD in Ireland

    Giltrap, M.; Ronan, J.; Hardenberg, S.; Parkes, G.; McHugh, B.; McGovern, E.; Wilson, J.G. (Elsevier, 2013)
    Candidate OSPAR/ICES recommended biomarkers at the level of the individual in Mytilus edulis for determination of good environmental status for MSFD were evaluated against contaminant levels at sites around Ireland. The sites chosen ranged from moderate to low pollution levels, but the actual ranking of the sites varied according to the contaminant levels present. At the most contaminated site, Cork, 4 out of 16 contaminants exceeded the EAC, while at Shannon, no EACs were exceeded. The SOS assay suggested that Cork was the healthiest site with a LT50 of 17.6 days, while SOS for Shannon was 15.6 days. Likewise, condition factors varied among sites and did not always correspond to contaminant-based status. There may be uncertainty in assigning status around the not good:good boundary. This raises potential difficulties not only in the biomarker/contaminant load relationship but also in the reliability of the biomarkers themselves and hence barriers meeting compliance levels.
  • Biological Effects and Chemical Measurements in Irish Marine Waters

    Giltrap, Michelle; McHugh, Brendan; Ronan, Jenny; Wilson, James; McGovern, Evin (Marine Institute, 2014-08)
    The overall aim of this project was to increase Ireland’s capacity for the generation of integrated monitoring of biological effects and chemical measurement data and for the completion of a pilot scale assessment of the quality of the Irish marine environment at a number of selected locations.
  • A Model Compound Study: The ecotoxicological evaluation of five organic contaminants with a battery of marine bioassays

    Macken, A; Giltrap, M; Foley, B; McGovern, E; McHugh, B; Davoren, M (Elsevier, 2008)
    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C18 resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone. Ecotoxicological evaluation of five organic marine sediment contaminants was conducted and the suitability of the test species for marine porewater TIE discussed.
  • An integrated approach to the toxicity assessment of Irish marine sediments. Application of porewater Toxicity Identification Evaluation (TIE) to Irish marine sediments.

    Macken, A; Giltrap, M; Foley, B; McGovern, E; McHugh, B; Davoren, M (Elsevier, 2009)
    An integrated approach to the ecotoxicological assessment of Irish marine sediments was carried out between 2004 and 2007. Phase I Toxicity Identification Evaluation (TIE) of sediment porewaters from two sites on the east coast of Ireland were conducted. Initial Tier I screening of three Irish sites identified the need for TIE after significant toxicity was observed with Tisbe battagliai and the Microtox® assay at two of the assayed sites (Alexandra Basin and Dunmore East). Porewaters classified as toxic were characterised using four manipulations, ethylenediaminetetraacetic acid (EDTA) chelation, sodium thiosulphate addition, C18 Solid Phase Extraction (SPE) and Cation Exchange (CE) SPE. Prior to initial testing, and TIE manipulations, all porewater samples were frozen at -20 ºC for several months until required. After initial Tier I testing Alexandra Basin porewater was classified as highly toxic by both assays while Dunmore East porewater only warranted a TIE with T. battagliai. Results of TIE manipulations for Alexandra Basin porewater and the Microtox® Basic test were inconclusive. The toxicity of the porewater in this assay was significantly reduced after freezing. Three experimental episodes were conducted with one month between each for the Alexandra Basin porewater. After each month of freezing the baseline toxicity was further reduced in the Microtox® assay, therefore it was not possible to draw accurate conclusions on the nature of the active contaminants in the sample. However, toxicity to T. battalgiai did not change after storage of the porewater. The C18 and CE SPE decreased the toxicity of Alexandra Basin porewater to the copepod indicating that both organic and cationic compounds (e.g. metals) were active in the sample. Dunmore East porewater was assayed with T. battalgiai and again a combination of organic and inorganic compounds were found to be partly responsible for the observed toxicity (C18, CE SPE and EDTA reduced toxicity). Results from these TIEs provide insight into the complexity of interpreting marine TIE data from porewater studies where mixtures of unknown substances are present.

View more