• Acidification and its effect on the ecosystems of the ICES Area

      Fernand, L.; LeQuesne, W.; Silke, J.; Li, B.; Kroeger, S.; Pinnegar, J.; Fossä, J.H.; Morán, X.A.G. (ICES, 2011)
      This focuses on the impacts of ocean acidification (OA) on ecosystems and higher trophic levels in the ICES Area. One of ICES distinguishing features is its access to scientists across the entire marine field. This report is based on the Report of the Workshop on the Significance of Changes in Surface CO2 and Ocean pH in ICES Shelf Sea Ecosystems (WKCpH; ICES, 2007c), updated to include recent research, using inputs from the chairs of ICES working groups. Oceanic uptake of atmospheric CO2 has led to a perturbation of the chemical environment, primarily in ocean surface waters, which is associated with an increase in dissolved inorganic carbon (DIC). The increase in atmospheric CO2 from ca. 280 ppmv (parts per million by volume) 200 years ago to 390 ppmv today (2011) has most probably been caused by an average reduction across the surface of the oceans of ca. 0.08 pH units (Caldeira and Wickett, 2003) and a decrease in the carbonate ion (CO32−) of ca. 20 μmol kg −1 (Keshgi, 1995; Figure 5.1). It has been estimated that the level could drop by a further 0.3 – 0.4 pH units by the year 2100 if CO2 emissions are not regulated (Caldeira and Wickett, 2003; Raven et al., 2005). A study of potential changes in most of the North Sea (Blackford and Gilbert, 2007) suggests that pH change this century may exceed its natural annual variability. Impacts of acidity induced change are likely, but their exact nature remains largely unknown, and they may occur across the whole range of ecosystem processes. Most work has concentrated on open‐ocean systems, and little research has been applied to the complex systems found in shelf‐sea environments.
    • The advantages of the use of discs containing single agents in disc diffusion testing of the susceptibility of Aeromonas salmonicida to potentiated sulphonamides

      Douglas, I.; Ruane, N.M.; Geary, M.; Carroll, C.; Fleming, G.T.A.; McMurray, J.; Smith, P. (Elsevier, 2007)
      The susceptibilities of 106 strains of Aeromonas salmonicida to trimethoprim/sulfamethoxazole (SFT) were determined in two laboratories using the Clinical and Laboratory Standards Institute's M42-A disc diffusion protocols. The data generated by the use of discs containing 25 μg SFT (SFT25) allowed the strains to be placed into two groups. Strains in one group (17 strains) generated no inhibition zones and the zones obtained from the other 89 strains were distributed over a wide range but showed no natural division into separate sub-classes. A further investigation performed by one of the participating laboratories, of the susceptibility of 91 of these 106 strains used discs containing 100 μg sulfmethoxazole (SFM100) and 5 μg trimethoprim (TMP5). Application of normalised resistance interpretation to these data allowed the estimation of epidemiological cut-off values for WT strains of ≥ 9 mm for SFM100 and ≥ 21 mm for TMP5. This investigation demonstrated the presence of three distinct phenotypic classes, one containing strains manifesting wild type susceptibility to both agents, another containing strains manifesting non-wild type susceptibility to both and a third containing strains manifesting wild type susceptibility with respect to TMP but non-wild type with respect to SFM. Analysis demonstrated the inability of SFT25 discs to generate data that allowed the separate identification of strains that were fully susceptible to both TMP and SFM from those that were fully susceptible to TMP but were not fully susceptible to SFM. It is recommended that, in investigation of the susceptibility to potentiated sulphonamides of isolates from diseased fish, separate discs, containing the individual components of the mixture, should be employed.
    • Amnesic shellfish poisoning in the king scallop, Pecten maximus, from the west coast of Scotland

      Campbell, D.A.; Kelly, M.S.; Busman, M.; Bolch, C.J.S.; Wiggins, E.; Moeller, P.D.R.; Morton, S.L.; Hess, P.; Shumway, S.E. (National Shellfisheries Association, 2001)
      The king scallop, Pecten maximus, is a valuable economic resource in the UK. The industry relies on supplying premium "roe-on" processed scallops to the continental market. In July 1999, king scallops harboring the amnesic shellfish poisoning (ASP) toxin, domnic acid (DA), in gonadal tissue at levels above the regulatory limit (20 μg DA g-1) were detected across a wide area of northern and western Scotland. In response, a survey of the southern extent of the closed harvest areas was initiated to describe variability of ASP toxin levels over varying spatial scales (<5 m to >5 km); determine the anatomical distribution of the toxin, and identify, isolate, and culture causative Pseudo-nitzschia species. Toxin analysis was conducted using a liquid chromatography-tandem mass spectroscopy (LC-MS/MS) procedure. The DA content of tissues followed the predictable rank order: all other tissue -1 gonad -1 adductor. The toxin levels within all other tissue (95% Cl = 580-760 μg DA g-1, n = 170) consistently accounted for 99% of the total individual toxin burden. DA levels in the gonad (95% CI = 8.2-11.0 μg DA g- 1, n = 170) were an order of magnitude below levels in all other tissue and contributed to less than 0.5% of the total individual toxin burden, although levels above the regulatory limit were detected in individual gonad samples. Adductor muscle tissue contained the lowest concentration of DA (95% Cl = 0.38-0.82 μg DA g- 1, n = 170), and was typically within two to three orders of magnitude below levels in all other tissue. None of the scallops examined had DA toxicities in adductor muscle tissue exceeding the regulatory limit. Toxin variability among individuals and sites was high (range of coefficients of variation (CV) in all other tissue = 29&-l20% and gonadal = 45%-85%). The results do give an indication of the scale on which microhabitat differences may influence ASP toxicity in P. maximus populations, because significant differences were found in all other and gonadal tissue toxin levels between groups of individuals only 25-m apart. In total, seven species of Pseudo-nitzschia were identified from west coast waters. A suspected causative species, P. australis, was found to produce high levels of DA, in culture. The high individual variation in toxicities and the occurrence of DA in the gonad at levels above the regula1ory limit clearly demonstrate the complexity of managing the king scallop fishery during ASP events.
    • Application of congener based multi-matrix profiling techniques to identify potential PCDD/F sources in environmental samples from the Burrishoole Catchment in the West of Ireland

      White, P.; McHugh, B.; Poole, R.; McGovern, E.; White, J.; Behan, P.; Foley, B.; Covaci, A. (Elsevier, 2014)
      Homologue and congener profiles of PCDD/Fs in eels, passive sampler and sediment extracts from the Burrishoole, a rural upland catchment on the western Irish seaboard were compared with potential PCDD sources. ΣPCDD/F levels in eels ranged from 2.9 to 25.9 pg g−1 wet weight, which are elevated compared to other Irish locations. The OCDD congener dominated the pattern of ΣPCDD/Fs in all matrices from Burrishoole. Passive samplers were successfully deployed to identify for the first time the presence in the water column of PCDD/Fs and dimethoxylated octachlorodiphenyl ether (diMeOoctaCDE), impurities found in pentachlorophenol (PCP) production. Principal component analysis (PCA) identified similarities between PCDD/F profiles in technical PCP mixtures and environmental samples from the Burrishoole region. Results strongly suggest residual PCDD contamination associated with historic local use of a dioxin contaminated product in the catchment area, with pentachlorophenol a strong candidate.
    • Assessment of biomarkers in Mytilus edulis to determine Good Environmental Status for implementation of MSFD in Ireland

      Giltrap, M.; Ronan, J.; Hardenberg, S.; Parkes, G.; McHugh, B.; McGovern, E.; Wilson, J.G. (Elsevier, 2013)
      Candidate OSPAR/ICES recommended biomarkers at the level of the individual in Mytilus edulis for determination of good environmental status for MSFD were evaluated against contaminant levels at sites around Ireland. The sites chosen ranged from moderate to low pollution levels, but the actual ranking of the sites varied according to the contaminant levels present. At the most contaminated site, Cork, 4 out of 16 contaminants exceeded the EAC, while at Shannon, no EACs were exceeded. The SOS assay suggested that Cork was the healthiest site with a LT50 of 17.6 days, while SOS for Shannon was 15.6 days. Likewise, condition factors varied among sites and did not always correspond to contaminant-based status. There may be uncertainty in assigning status around the not good:good boundary. This raises potential difficulties not only in the biomarker/contaminant load relationship but also in the reliability of the biomarkers themselves and hence barriers meeting compliance levels.
    • An assessment of RT-qPCR accuracy in monitoring infectious norovirus in oyster farms

      Hunt, K.; Butler, F.; Doré, B; Keaveney, S. (University College Dublin. School of Biosystems Engineering, 2014)
      Wastewater contamination causes Norovirus (NoV) to accumulate in commercial shellfish, which is monitored using RT-qPCR. RT-qPCR does not distinguish infectious copies from non-infectious, so it is not ideal for risk assessment. Additionally, sites being sampled are assumed to be spatially homogenous, but this has not been shown. To test homogeneity, and the standard sample size of ten, a single site was intensively sampled during the 2013- 2014 winter period. Analysis of results is ongoing. Also during the winter season, in three additional sites, the ratio of infectious to noninfectious virus copies detected with RT-qPCR was modelled using an FRNA bacteriophage surrogate. Analysis of results is ongoing.
    • Assessment of the risk of introducing harmful marine organisms by shipping to Bantry Bay

      Minchin, D. (1997)
      The main shipping activity in Bantry Bay is centred at Leahill, a site where there is aggregate extraction with direct transmission to bulk carriers at a dedicated pier. The size of vessels ranges from 250 to7,800mtNRT but with the majority of vessels being of 700 to l,800mtNRT. Ballast water from these vessels is required to be deposited at sea before entering the Bay should these vessels becoming from outside of Ireland. If this is done the risk of introducing dinoflagellate species present in those ports in Atlantic France and Spain will be reduced. Vessels from Irish ports are not required to discharge ballast before entering the Bay. The main risk to Bantry Bay, albeit small - because the amount of ballast discharged is small, is from inoculations of the toxic dinoflagellate Alexandrium tamarense from ships that have ballasted in Cork Harbouror Belfast Lough. It would be prudent for vessels ballasting in these sea inlets not to do so in the region and during the time of the toxic algal bloom events. Although vegetative stages of A. tamarense have been identified from the plankton of Bantry Bay and Alexandrium sp. cysts have been found in fine sediments it is not known whether further inoculations of A. tamarense either in its vegetative or cyst state could result in a PSP event within the Bay. The development of a management plan for ships' ballasting in Cork Harbour and Belfast Lough based on cyst distributions and the distribution of algal bloom events could greatly reduce the risk of a transfer. In the meantime discoloured water in Cork Harbour and Belfast Lough should not be ballasted. The Cork Harbour Commissioners will be advised when algal bloom events take place so that basic precautions.
    • AZA – the producing organisms – biology and trophic transfer

      Tillmann, U.; Salas, R.; Jauffrais, T.; Hess, P.; Silke, J. (CRC Press, 2014)
      Compared to the knowledge on toxin structure, detection methods, and toxicology, convincing clarification of the aetiology of AZP was seriously lacking behind for quite a long time. Based upon the seasonal and episodic accumulation of AZA toxins in suspension-feeding bivalve molluscs – a situation similar to several other marine biotoxins - a planktonic source has been suspected from the outset. Furthermore, due to their polyether structural features, AZA has been suspected to be a dinoflagellate metabolite. Thus, it was no surprise that is was a dinoflagellate species which was first claimed to be the source of AZA. The link between AZA and P. crassipes, however, remained controversial because production of AZA by P. crassipes could not be verified in spite of numerous attempts based upon field surveys and laboratory investigations of cultured and isolated cells. Moreover, in contrast to other proven producers of phycotoxins, which are all primarily phototrophic, P. crassipes is a heterotrophic dinoflagellate, known to prey upon other dinoflagellates as food. The likelihood, therefore, that another dinoflagellate may produce AZA, which then accumulates in P. crassipes through normal feeding processes, could not be neglected.
    • Bioactive agents from marine mussels and their effects on human health

      Grienke, U.; Silke, J.; Tasdemir, D. (Elsevier, 2014)
      The consumption of marine mussels as popular seafood has increased steadily over the past decades. Awareness of mussel derived molecules, that promote health, has contributed to extensive research efforts in that field. This review highlights the bioactive potential of mussel components from species of the genus Mytilus (e.g. M. edulis) and Perna (e.g. P. canaliculus). In particular, the bioactivity related to three major chemical classes of mussel primary metabolites, i.e. proteins, lipids, and carbohydrates, is evaluated. Within the group of proteins the focus is mainly on mussel peptides e.g. those obtained by bio-transformation processes, such as fermentation. In addition, mussel lipids, comprising polyunsaturated fatty acids (PUFAs), are discussed as compounds that are well known for prevention and treatment of rheumatoid arthritis (RA). Within the third group of carbohydrates, mussel polysaccharides are investigated. Furthermore, the importance of monitoring the mussel as food material in respect to contaminations with natural toxins produced by microalgae is discussed
    • Biofouling of the hydroid Ectopleura larynx on aquaculture nets in Ireland: implications for finfish health

      Baxter, E.J.; Sturt, M.M.; Ruane, N.M.; Doyle, T.K.; McAllen, R.; Rodger, H.D. (Fish Veterinary Society, 2012)
      The potential direct health problems posed to marine-farmed salmonids by the biofouling hydroid Ectopleura larynx (Phylum Cnidaria, Class Hydrozoa) and in situ net washing processes to remove the fouling organisms have not yet been addressed. In an attempt to address the possible impacts, the rate of E. larynx growth on aquaculture nets over a net-cleaning cycle was assessed and Atlantic salmon (Salmo salar) smolts were exposed to hydroid-biofouled nets under experimental challenge. After only 1 week of immersion, there was a high settlement of E. larynx on net panels, with the maximum growth observed after 3 week of immersion. For the challenges trials, experimental treatment groups of S. salar were exposed to hydroid net panels or loose hydroid material for 11 hours under controlled conditions. Gills were examined for signs of gross damage and assigned a histopathological gill score. Prior to the experiment, the gills were healthy and did not show signs of damage from any insult. After exposure to E. larynx, focal areas of epithelial sloughing, necrosis and haemorrhage were visible on the gills under histopathology and a maximum gill score of 4 was observed. These results are the first in an investigation of this kind and suggest that E. larynx can damage the gills of S. salar. Further work on this area is vital to develop a better understanding of the pathogenesis of the damage caused by hydroids and their long-term effects on fish health, growth and survival.
    • Biological Effects and Chemical Measurements in Irish Marine Waters

      Giltrap, Michelle; McHugh, Brendan; Ronan, Jenny; Wilson, James; McGovern, Evin (Marine Institute, 2014-08)
      The overall aim of this project was to increase Ireland’s capacity for the generation of integrated monitoring of biological effects and chemical measurement data and for the completion of a pilot scale assessment of the quality of the Irish marine environment at a number of selected locations.
    • Biomarkers: are realism and control mutually exclusive in integrated pollution assessment?

      Wilson, J.G.; McHugh, B.; Giltrap, M. (Elsevier, 2014)
      The conventional view of pollution monitoring is that any choice is a trade-off between realism and precision, as the control over confounding variables decreases with the increasing degree of organization of the test system. Dublin Bay is subject to considerable anthropogenic pressures and there have been many attempts to quantify the status of the system at organizational levels from DNA strand breaks (Comet) to the system itself (Ecological Network analysis, ENA). Using Dublin Bay as an example, the data show there was considerable variability at all levels of organization. At intracellular level, Lysosome Membrane Stability (LMS, assessed by Neutral Red Retention, NRR) varied almost 4-fold with season and individual condition, while the community level AZTI Marine biotic Index (AMBI) had a similar range within a single, supposedly homogeneous, site. Overall, there was no evidence that biomarkers of the lower levels of organisation reduced the variability of the measure, despite the extra control over influencing variables, nor was there any evidence that variability was additive at higher levels of organisation. This poses problems for management, especially given the fixed limits of Ecological Quality Standards (EQSs). Clearly while the integrated approach to pollution monitoring does offer the potential to link effects across the organizational range, it should also be possible to improve their capability by widening the database for reference values, particularly at the higher level of organization, and by process models, including the confounding variables found in the field, for those at lower level.
    • Bivalve aquaculture and exotic species: a review of ecological considerations and management issues

      McKindsey, C.W.; Landry, T.; O'Beirn, F.X.; Davies, I.M. (National Shellfisheries Association, 2007)
      Bivalves have been grown and transported for culture for hundreds of years and the introduction of some species outside of their native range for aquaculture has been suggested to be one of the greatest modes of introduction of exotic marine species. However, there has yet to be a thorough assessment of the importance of aquaculture and bivalve culture in particular, to the introduction and spread of exotic species. This paper reviews some of the environmental and ecological implications of the relationship between bivalve aquaculture and the introduction and spread of exotic species, management implications and mitigation strategies. Two broad classes of introductions of exotic species may result from activities associated with bivalve aquaculture. First, the intentional introduction of exotic species into an area for aquaculture purposes, i.e. the ‘‘target’’ species. These are typically foundation or engineering species and may have a considerable influence on receiving ecosystems. Second, the introduction of species that are either associated with introduced bivalves or facilitated by aquaculture activities (i.e. structures or husbandry practices). These may include both ‘‘hitchhiking’’ species (organisms that grow in association with or may be transferred with cultured bivalves) and disease causing organisms.Management options should include the use of risk assessments prior to transfers and quarantines. Various types of mitigation for exotic species have been evaluated but are generally not very successful. Because the risk of exotic species to ecosystems and the bivalve farming industry itself may be great, effort should be directed to better predict and halt introductions of potentially harmful species.
    • Characterisation of norovirus contamination in an Irish shellfishery using real-time RT-qPCR and sequencing analysis

      Rajko-Nenow, Paulina; Keaveney, Sinéad; Flannery, John; O'Flaherty, Vincent; Doré, William (Elsevier, 2012)
      Norovirus (NoV) is the single most important agent of foodborne viral gastroenteritis worldwide. Bivalve shellfish, such as oysters, grown in areas contaminated with human faecal waste may become contaminated with human pathogens including NoV. A study was undertaken to investigate NoV contamination in oysters (Crassostrea gigas) from a shellfishery over a 24 month period from October 2007 to September 2009. Oyster samples were collected monthly from a commercial shellfish harvest area classified as category B under EU regulations, but that had had been closed for commercial harvesting due to its previous association with NoV outbreaks. Real-time reverse transcription quantitative PCR (RT-qPCR) was used to determine the concentration of human NoV genogroups I and II (GI and GII) in monthly samples. Total NoV (GI and GII) concentrations in NoV positive oysters ranged from 97 to 20,080 genome copies g− 1 of digestive tissue and displayed a strong seasonal trend with greater concentrations occurring during the winter months. While NoV GII concentrations detected in oysters during both years were similar, NoV GI concentrations were significantly greater in oysters during the winter of 2008/09 than during the winter of 2007/08. To examine the NoV genotypes present in oyster samples, sequence analysis of nested RT-PCR products was undertaken. Although NoV GII.4 is responsible for the vast majority of reports of outbreaks in the community, multiple NoV genotypes were identified in oysters during this study: GI.4, GI.3, GI.2, GII.4, GII.b, GII.2, GII.12, and GII.e. NoV GI.4 was the most frequently detected genotype throughout the study period and was detected in 88.9% of positive samples, this was followed by GII.4 (43.7%) and GII.b (37.5%). This data demonstrates the diversity of NoV genotypes that can be present in sewage contaminated shellfish and that a disproportionate number of non-NoV GII.4 genotypes can be found in environmental samples compared to the number of recorded human infections associated with non-NoV GII.4 genotypes.
    • Concentration of norovirus during wastewater treatment and its impact on oyster contamination

      Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O’Flaherty, Vincent; Doré, William (American Society for Microbiology, 2012)
      Concentrations of E. coli, FRNA bacteriophage, norovirus genogroup I (NoV GI) and II (NoV GII) in wastewater were monitored weekly over a one-year period at a wastewater treatment plant (WWTP) providing secondary treatment. A total of 49 samples of influent, primary and secondary-treated wastewater were analyzed. Using a real-time RT-qPCR, mean NoV GI and NoV GII concentrations detected in effluent wastewater were 2.53 and 2.63 log10 virus genome copies 100 ml-1 respectively. Mean NoV concentrations in wastewater during the winter period (January to March inclusive) (n=12) were 0.82 (NoV GI) and 1.41 (NoV GII) log units greater than mean concentrations for the rest of the year (n=37). The mean reduction of NoV GI and GII during treatment was 0.80 and 0.92 log units respectively with no significant difference detected in the extent of NoV reductions due to season. No seasonal trend was detected in the concentrations of E. coli or FRNA bacteriophage in wastewater influent and showed mean reductions of 1.49 and 2.13 log units respectively. Mean concentrations of 3.56 and 3.72 log10 virus genome copies 100 ml-1 for NoV GI and GII respectively were detected in oysters sampled adjacent to the WWTP discharge. A strong seasonal trend was observed and concentrations of NoV GI and GII detected in oyster were correlated with concentrations detected in the wastewater effluent. No seasonal difference was detected in concentrations of E. coli or FRNA bacteriophage detected in oysters.
    • Cork Harbour PSP incident

      Doyle, J.; Dunne, T. (1985)
      Gonyaulax tamarensis is one of the principle organisms involved in Paralytic Shellfish Poisoning in Europe and North America. P.S.P. has not been described in Irish waters with the exception of one incidence in Belfast Lough and also in Kerry in the late 1800s, although this cannot be verified. G. tamarensis has only been recorded in Irish waters as individual organisms and no bloom has been described up to this.
    • Creating a weekly Harmful Algal Bloom bulletin

      Leadbetter, A.; Silke, J.; Cusack, C. (Marine Institute, 2018)
      This document describes the procedural steps in creating an information product focused on toxic and harmful phytoplankton. The product is an online Harmful Algal Bloom (HAB) bulletin for aquaculturists, who can face serious operational challenges in the days after a HAB event. Data from satellite, numerical hydrodynamic models and In-situ ocean observations are organised and presented into visual information products. These products are enhanced through local expert evaluation and their interpretation is summarised in the bulletin. This document aims to provide both process overviews (the “what” of the Best Practice in producing the bulletins) and detail procedures (the “how” of the Best Practice”) so that the bulletins may be replicated in other geographic regions.
    • Culture of surfclams Spisula solidissima sp., in coastal Georgia: nursery culture

      O'Beirn, F.X.; Walker, R.L.; Hurley, D.H.; Moroney, D.A. (National Shellfisheries Association, 1997)
      Growth of the Atlantic surfclam, Spisula solidissima solidissima, was compared with that of the southern Atlantic surfclam, Spisula solidissima similis. All experimental animals were reared in upweller units at 20°C and fed cultured algae on a daily basis. Over the 14 wk of the study, the Atlantic surf clams grew markedly better (8.9-mm increase in shell length and a 1,103% increase in biomass) than the southern Atlantic surfclams (6.6-mm increase in shell length and 573% mcrease in biomass). Mortality for both groups was negligible. The mean shell lengths attained for the Atlantic surfclams (15.3 mm) and the southern Atlantic surfclams (13 mm) at the conclusion of the study were large enough to ensure good growth and survival on relocation to a field growout environment. The growth patterns obtained under similm growth conditions further highlight some basic life history differences between these subspecies, which were apparent from other studies.
    • Decreased Performance of Rainbow Trout Oncorhynchus mykiss Emergence Behaviors Following Embryonic Exposure to Benzo[a]pyrene

      Ostrander, G.K.; Anderson, J.J. (United States Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 1990)
      The sublethal effects induced by a model carcinogen and environmental contaminant on salmonid emergence behaviors have been studied. Rainbow trout embryos were exposed for 24 hours to 25 IAg/mL of benzo[a)pyrene 1 week prior to hatching. Exposures occurred during the late organogenesis period of development and allowed assessment of how a single embryonic exposure might affect emergence behaviors nearly 6 weeks later. Though no differences in numbers of alevins successfully emerging were observed, a significant decrease was noted in performance of the upstream orientation behaviors characteristic ofemergence among wild individuals.These findings are discussed in terms ofa model describing the role of upstream swimming behavior after emergence.
    • Detection of human viruses in shellfish and update on REDRISK research project, Clew Bay, Co. Mayo

      Keaveney, S.; Guilfoyle, F.; Flannery, J.; Doré, B. (Marine Institute, 2006)
      This paper describe the progress in norovirus detection methods and initial results from the REDRISK study.