• AZA – the producing organisms – biology and trophic transfer

      Tillmann, U.; Salas, R.; Jauffrais, T.; Hess, P.; Silke, J. (CRC Press, 2014)
      Compared to the knowledge on toxin structure, detection methods, and toxicology, convincing clarification of the aetiology of AZP was seriously lacking behind for quite a long time. Based upon the seasonal and episodic accumulation of AZA toxins in suspension-feeding bivalve molluscs – a situation similar to several other marine biotoxins - a planktonic source has been suspected from the outset. Furthermore, due to their polyether structural features, AZA has been suspected to be a dinoflagellate metabolite. Thus, it was no surprise that is was a dinoflagellate species which was first claimed to be the source of AZA. The link between AZA and P. crassipes, however, remained controversial because production of AZA by P. crassipes could not be verified in spite of numerous attempts based upon field surveys and laboratory investigations of cultured and isolated cells. Moreover, in contrast to other proven producers of phycotoxins, which are all primarily phototrophic, P. crassipes is a heterotrophic dinoflagellate, known to prey upon other dinoflagellates as food. The likelihood, therefore, that another dinoflagellate may produce AZA, which then accumulates in P. crassipes through normal feeding processes, could not be neglected.
    • The dinophycean genus Azadinium and related species – morphological and molecular characterization, biogeography, and toxins

      Tillmann, U.; Elbrächter, M.; Gottschling, M.; Gu, H.; Jeong, H.J.; Krock, B.; Nézan, E.; Potvin, E.; Salas, R.; Soehner, S. (International Society for the Study of Harmful Algae, 2014)
      Azaspiracids (AZAs) are the most recently discovered group of lipophilic marine biotoxins of microalgal origin. It took about twelve years from the first human poisoning event until a culprit for AZA production was unambiguously identified and described as a novel species, Azadinium spinosum, within a newly created genus. Since then, knowledge on the genus has increased considerably, and an update on the current circumscription of the genus is presented here including various aspects of morphology, phylogeny, biogeography, and toxin production. There are currently five described species: A. spinosum, A. obesum, A. poporum, A. caudatum, and A. polongum. As indicated by molecular sequence variation detected in field samples, there are probably more species to recognize. Moreover, Amphidoma languida has been described recently, and this species is the closest relative of Azadinium based on both molecular and morphological data. Amphidoma and Azadinium are now grouped in the family Amphidomataceae, which forms an independent lineage among other monophyletic major groups of dinophytes. Initially, azaspiracids have been detected in A. spinosum only, but AZA production within the Amphidomataceae appears complex and diverse: A new type of azaspiracid, with a number of structural variants, has been detected in A. poporum and Amphidoma languida, and AZA-2 has now been detected in Chinese strains of A. poporum.
    • Morphological and molecular characterization of the small armoured dinoflagellate Heterocapsa minima (Peridiniales, Dinophyceae)

      Salas, R.; Tillmann, U.; Kavanagh, S. (Taylor and Francis, 2014)
      The dinophycean genus Heterocapsa is of considerable interest as it contains a number of bloom-forming and/or harmful species. Fine structure of organic body scales is regarded as the most important morphological feature for species determination but currently is unknown for the species H. minima described by Pomroy 25 years ago. Availability of a culture of H. minima collected in the south-west of Ireland allowed us to provide important information for this species, including cell size, cell organelle location, thecal plate pattern, body scale fine structure and molecular phylogeny. Light microscopy revealed the presence of one reticulate chloroplast, an elongated centrally located nucleus, and the presence of one pyrenoid surrounded by a starch sheath. Scanning electron microscopy (SEM) of the thecal plate pattern indicated that Pomroy erroneously designated the narrow first cingular plate as a sulcal plate. In addition, SEM revealed as yet unreported details of the apical pore complex and uncommon ornamentations of hypothecal plates. Organic body scales of H. minima were about 400 nm in size, roundish, with a small central hole and one central, six peripheral and three radiating spines. They differ from other body scales described within this genus allowing for positive identification of H. minima. Heterocapsa minima shares gross cell morphological features (hyposome smaller than episome, elongated nucleus in the middle of the cell, one pyrenoid located in the episome on its left side) with H. arctica (both subspecies H. arctica subsp. arctica and H. arctica subsp. frigida), H. lanceolata and H. rotundata. These relationships are reflected in the phylogenetic trees based on LSU and ITS rDNA sequence data, which identified H. arctica (both subspecies), H. rotundata and H. lanceolata as close relatives of H. minima.
    • A multi-year comparison of Spirolide profiles in planktonic field samples from the North Sea and adjacent waters

      Krock, B.; Tillmann, U.; Alpermann, T.; Salas, R.; Cembella, A.D. (Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, 2010)
      Alexandrium ostenfeldii isolates from distinct geographical locations showed almost identical profiles, primarily consisting of 20-methyl spirolide G (20-meG). Whereas the Scottish isolate produces only this variant, the Irish isolate additionally yields slight amounts of 13-desmethyl spirolide C (13-desmeC). These profiles were also reflected in the field data, where 20-meG was the most abundant spirolide throughout all samples and years.
    • Novel azaspiracids produced by Amphidomataceae

      Krock, B.; Tillmann, U.; Jeong, H.J.; Potvin, E.; Salas, R.; Kilcoyne, J.; Gu, H. (Alfred-Wegener-Institut für Polar- und Meeresforschung, 2012)