• Detection of koi herpesvirus (KHV) in koi carp (Cyprinus carpio L.) imported into Ireland.

      McCleary, S.; Ruane, N. M.; Cheslett, D.; Hickey, C.; Rodger, H.D.; Geoghegan, F.; Henshilwood, K. (Europeand association of fish pathologists, 2011)
      This report described the first detections of koi herpesvirus (KHV) in the Republic of Ireland in imported koi carp. In both cases the KHV suspicions were confirmed by molecular diagnosis and the infected stocks culled.
    • Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs

      Donohoe, O. H.; Henshilwood, K.; Way, K.; Hakimjavadi, R.; Stone, D. M.; Walls, D. (PLoS ONE, 2015)
      MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.
    • A longitudinal study of amoebic gill disease on a marine Atlantic salmon farm utilising a real-time PCR assay for the detection of Neoparamoeba perurans

      Downes, J.K.; Henshilwood, K.; Collins, E.M.; Ryan, A.; O'Connor, I.; Rodger, H.D.; MacCarthy, E.; Ruane, N.M. (Inter Research, 2015)
      Amoebic gill disease (AGD) is a proliferative gill disease of marine cultured Atlantic salmon Salmo salar, with the free-living protozoan Neoparamoeba perurans being the primary aetiological agent. The increased incidence of AGD in recent years presents a significant challenge to the Atlantic salmon farming industry in Europe. In this study, a real-time TaqMan® PCR assay was developed and validated to detect Neoparamoeba perurans on Atlantic salmon gills and further used to monitor disease progression on a marine Atlantic salmon farm in Ireland in conjunction with gross gill pathology and histopathology. The assay proved specific for N. perurans, with no cross-reactivity with the related species N. pemaquidensis, N. branchiphila or N. aestuarina, and was capable of detecting 2.68 copies of N. perurans DNA μl−1. Although the parasite was detected throughout the 18 mo period of this study, mortality peaks associated with clinical AGD were only recorded during the first 12 mo of the marine phase of the production cycle. The initial AGD outbreak resulted in peak mortality in Week 17, which was preceded by PCR detections from Week 13 onwards. Freshwater treatments were an effective method for controlling the disease, resulting in a reduction in the weekly mortality levels and also a reduction in the number of PCR-positive fish. In comparison to traditional diagnostic methods, our PCR assay proved to be highly sensitive and a valuable tool to monitor disease progression and, therefore, has the potential to provide information on the timing and effectiveness of treatments.
    • An outbreak of francisellosis in wild-caught Celtic Sea Atlantic cod, Gadus morhua L., juveniles reared in captivity

      Ruane, N.M.; Bolton-Warberg, M.; Rodger, H.D.; Colquhoun, D.J.; Geary, M.; McCleary, S.J.; O´Halloran, K.; Maher, K.; O´Keeffe, D.; Mirimin, L.; et al. (Wiley, 2013)
    • Phylogenetic analysis of infectious pancreatic necrosis virus in Ireland reveals the spread of a virulent genogroup 5 subtype previously associated with imports

      Ruane, N.M.; McCleary, S.J.; McCarthy, L.J.; Henshilwood, K. (Springer Verlag, 2015)
      Infectious pancreatic necrosis is a significant disease of farmed salmonids resulting in direct economic losses due to high mortality and disease-management costs. Significant outbreaks of the disease occurred in farmed Atlantic salmon in Ireland between 2003 and 2007, associated with imported ova and smolts. As the virus was known to occur in the country since the development of aquaculture in the 1980s, this study examined archived samples to determine whether these older isolates were associated with virulent forms. The study showed that two genotypes of IPNV were present in the 1990s, genotype 3 and genotype 5. A more virulent subtype of the virus first appeared in 2003 associated with clinical outbreaks of IPN, and this subtype is now the most prevalent form of IPNV found in the country. The data also indicated that IPNV in Ireland is more closely related to Scottish and continental European isolates than to Norwegian, Chilean and Australasian genogroup 5 isolates.