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Highlights 25 

� Dynamics of herring populations investigated using a long-term dataset (1959-2009) 26 

� Herring spawning components were found to have fluctuated greatly over time 27 

� Celtic Sea autumn-spawners characteristically bigger herring than winter-spawners 28 

� Marked changes in length- and weight-at-age were also observed  29 

� However growth changes not explained by the complex and dynamic stock-structure 30 
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Abstract 31 

Sub-stock components of highly exploited migratory fish species exhibit different life-32 

history traits and can thus show variation in productivity and vulnerability to fishing 33 

pressure. Celtic Sea herring comprises both autumn and winter-spawners that are targeted 34 

by the same fishery. The current study investigated if the relative abundances of the two 35 

components in the Celtic Sea have changed over time, and whether this could explain 36 

marked long-term trends in size-at-age. The study utilized a remarkably long time-series 37 

of biological data from commercial landings (1959-2009). Based on the maturity state of 38 

the gonads at the time of sampling, herring were assigned to seasonal spawning 39 

components. Significant temporal variations in spawning component dominance were 40 

found, even after potential bias due to fishing history patterns were accounted for. Strong 41 

directional changes in the relative proportion of spawning components consisted of 42 

autumn spawning herring proportions reaching a peak in the 1990s before drastically 43 

declining. Winter spawning herring had lower mean lengths- and weights-at-age than 44 

autumn spawning herring. The recent decline in the autumn spawning component did not 45 

fully explain the observed decline in size-at-age in the catches, with both spawning 46 

components showing similar decreases in mean-size parameters over time. Response of 47 

spawning components to environmental changes may have consequences for the fishery, 48 

especially in light of the observed influence of temperature on spawning components. 49 

Life-cycle diversity in herring stocks may confer resilience to potential climate-induced 50 

changes. Therefore, it is suggested that the relative proportions of spawning components 51 

should be monitored and diversity should be preserved as part of the management of 52 

fisheries for this species, which is characterised by stock complexity. 53 
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1. Introduction 57 

Ensuring the sustainability of fisheries which exploit a mixture of spawning groups 58 

requires cautious management approaches, focusing on the impacts of fishing pressure on 59 

sub-stock diversity (Stephenson, 1999). While a suite of techniques are available to 60 

accurately identify fish populations and their origin (Cadrin et al., 2005), accounting for 61 

complexities in stock structure remains a challenge for fisheries management (Kell et al., 62 

2009; Stephenson, 1999). Although fisheries management measures traditionally focus 63 

exclusively on maintaining stock biomass above critical levels, evidence suggests that 64 

preserving life-cycle complexity and the behavioural mechanisms which ensure the 65 

closure of the life-cycle and survival of future generations are of paramount importance 66 

in terms of resilience to stock collapse (Dickey-Collas et al., 2010; Petitgas et al., 2010; 67 

Secor et al., 2009). 68 

 69 

In an evolutionary context, the reproductive strategies adopted by fish populations can 70 

determine their ability to survive and adapt to changing environments (i.e. resistance and 71 

resilience). Some species display a large panel of reproductive strategies over the range 72 

of their distribution, resulting in the occurrence of sub-stocks with characteristic life-73 

history traits and varying rates of productivity (Bailey, 1997; Brander, 1994; Melvin et 74 

al., 2009). When spatial overlap of different sub-stocks exists, a fishery targeting the 75 

mixed stocks can have a differential impact on each component (Geffen et al., 2011; Kell 76 

et al., 2009). Similarly, changes in stock composition can affect the overall productivity 77 

of such mixed fisheries (Kerr et al., 2010). Recent studies, mainly focusing on cod, have 78 

highlighted the importance of accounting for underlying sub-stock structure, especially 79 
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for the less productive component as overfishing could have important repercussions on 80 

the overall spawning diversity of the population, potentially leading to loss of adaptability 81 

to environmental changes among other effects (Hutchinson, 2008; Reich and DeAlteris, 82 

2009; Sterner, 2007). A better understanding of biological variation between sub-stock 83 

components within the same fishery and of the long-term trends in sub-stock structure 84 

can inform the refinement of management plans for heavily-exploited fish populations. 85 

 86 

One of the most important pelagic species exploited by fisheries in the northeast Atlantic 87 

is the Atlantic herring, Clupea harengus L. (Reiss et al., 2009). This “population-rich” 88 

species (Sinclair and Iles, 1988) has played a key role in the development of stock 89 

structure theories (Cushing, 1969; Hjort, 1914; Iles and Sinclair, 1982; McQuinn, 1997a). 90 

The species is characterised by highly variable recruitment over time and phenotypic 91 

plasticity (Geffen, 2009), resulting in considerable temporal and spatial stock complexity 92 

(Geffen et al., 2011; Melvin et al., 2009; Ruzzante et al., 2006). Timing of spawning in 93 

herring populations often acts to isolate sympatric sub-populations (Brophy and 94 

Danilowicz, 2002; Brophy and Danilowicz, 2003; Brophy et al., 2006; McPherson et al., 95 

2001). Herring fisheries often exploit a mixture of seasonal spawning components (e.g. 96 

Bierman et al., 2010; Clausen et al., 2007; Melvin et al., 2009) thus complicating the 97 

assessment and management of exploited stocks. 98 

 99 

Herring populations to the south of Ireland, in the Celtic Sea (CS), spawn in several 100 

discrete areas along the Irish coast (Breslin, 1998), which is sub-divided within three 101 

ICES (International Council for the Exploration of the Sea) Divisions: VIIj, VIIg, and 102 
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VIIaS (Figure 1). For assessment and management purposes, CS herring are treated as a 103 

single stock unit (ICES, 2010) that encompasses the CS shelf (Figure 1). The discrete 104 

spawning stock components are generally mixed throughout most of their life-cycle, on 105 

off-shore feeding and overwintering areas, as well as in nursery areas (Brophy and 106 

Danilowicz, 2002). Spatio-temporal isolation occurs only for spawning which takes place 107 

between late September and February (Breslin, 1998). The CS herring population thus 108 

consists of a mixture of autumn-spawners (AS) and winter-spawners (WS). Recently, a 109 

decline in size-at-age has occurred, both in the stock and in the catches (Figure 2), but the 110 

cause of this decline remains unexplained (ICES, 2010). The phenomenon is not unique 111 

to this stock (Cardinale and Arrhenius, 2000; Neuheimer and Taggart, 2010; Toresen, 112 

1990) and warrants further investigation. 113 

 114 

Failure to account for underlying stock structure of herring populations that are heavily 115 

fished could bias the assessment and potentially lead to ineffective management 116 

(Stephenson, 1999). Improved understanding of temporal trends in the relative abundance 117 

of spawning components is needed to ensure that management of herring fisheries 118 

maintains sufficient spawning diversity and to prevent stock collapse. In light of this, the 119 

purpose of the current study was to investigate (1) if the relative abundance of AS and 120 

WS components in the CS have changed over time, and if so, (2) whether this could 121 

explain the long-term trends in size-at-age observed in the overall population. If the two 122 

spawning components display different growth rates, a decline in the faster growing 123 

component could explain the observed decrease in overall size-at-age in the fishery. The 124 

study utilized data from commercial landings from 1959 to 2009. The use of such a long-125 
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term and unique dataset provided a rare opportunity to track changes in the composition 126 

and stock structure of CS herring.  127 

Bio-physical processes in the North-Atlantic basin seem to be mainly influenced by the 128 

Atlantic Multi-decadal Oscillation (AMO) which is calculated from de-trended sea 129 

surface temperature (SST) anomalies (Kerr, 2000); and by the North Atlantic Oscillation 130 

(NAO) which expresses fluctuations in the difference of atmospheric pressure at sea level 131 

between the Icelandic low and Azores high (Hurrell et al., 2003). As potential drivers of 132 

changes in abundance and distribution of fish populations, the influence of NAO, AMO, 133 

local SST and salinity conditions on the relative proportions of the spawning components 134 

were also investigated.  135 

 136 

2. Materials and Methods 137 

2.1 About the database 138 

2.1.1 Raw data 139 

Detailed biological and fisheries data have been collected from CS herring commercial 140 

landings since 1959. Random samples of 50 or 100 herring were taken from a proportion 141 

of landings, primarily caught by mid-water trawls. Sampling effort focused on obtaining 142 

spatially and temporally representative samples. Information about the sample, such as 143 

the vessel, area, date, location and biological characteristics (i.e. length to the nearest half 144 

centimetre interval, weight in grams (only after 1975), sex, maturity stage of the gonads, 145 

and age) were recorded.  146 

The CS herring assessment year runs from April 1st to  March 31st the following year 147 

(ICES, 2010). Throughout this study, fishing seasons were referred to according to the 148 
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year in which the assessment started, so 1959/1960 was referred to as 1959. The standard 149 

convention was used to assign fish to age groups using counts of winter rings in otoliths 150 

(ICES, 2003). Fish in this stock were given a conventional “birth date” of April 1st, and 151 

the first translucent winter ring counted on the otolith to age corresponds to its second 152 

“birthday”, such that a 1-winter ring herring was classed as a 2-year old.  153 

 154 

2.1.2 Standardized data 155 

In each year, monthly sampling effort was affected by the pattern of the fishery. To 156 

visually inspect this potential source of bias, the numbers of fish collected in each season 157 

in absolute terms (Figure 3a) and as a proportion of the total yearly sampling effort 158 

(Figure 3d) were plotted over time. The data were then split into two periods: autumn 159 

months (Figure 3b, e) and winter months (Figure 3c, f). Re-sampling was conducted to 160 

standardize for sampling effort by randomly selecting a fixed number of fish (n=50) 161 

without replacement per unit time (i.e. per month or per season). The re-sampling ensured 162 

that any observed fluctuations in the relative proportions would not be driven by 163 

sampling effort variability. The relevant models (described below) were also fitted to 100 164 

re-sampled datasets (i.e. iterations). Parameter estimates from these iterations were used 165 

to extract the mean values and 95% confidence intervals.  166 

 167 

2.2 Allocation of fish to spawning components 168 

The maturity status of herring is assessed using an eight-stage classification system based 169 

on Landry and McQuinn (1988) and ICES (2003). Fish were assigned to seasonal 170 

spawning components (i.e. AS, WS, or “unknown” (U)) based on the stage of their 171 

gonads at the time of sampling. Spawning (stage VI) and spent (stage VII) fish caught 172 
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during the autumn period (i.e. September, October and November) were classified as AS, 173 

since a fish that has just spawned (i.e. stage VII) is unlikely to have spawned earlier in the 174 

season based on historical records of spawning activity in the CS (ICES, 2010; Molloy, 175 

2006). Similarly, stages V (i.e. pre-spawning) and VI fish caught in the winter time (i.e. 176 

December, January and February) were classified as WS, as it is unlikely that CS herring 177 

would spawn later in the fishing year than during the winter. Fish at other stages of 178 

development were classed as U since the timing of spawning could not be reliably 179 

predicted.  180 

 181 

2.3 Statistical analyses 182 

Statistical analyses of the data were conducted in three stages; firstly two categorical 183 

response models (Chi-squared analyses and Generalized Additive Models (GAM)) were 184 

fitted to the spawner proportions over time. Secondly, a series of Generalized Linear 185 

Models (GLM) were used to establish if the AS and WS components show differences in 186 

mean-size at age-3 and over time. Finally, a scenario testing procedure was conducted to 187 

examine the relative effect of changes in spawner proportions on the mean-size in the 188 

whole population.  189 

 190 

2.3.1 Analysis of trends in the relative proportions of spawning components  191 

2.3.1.1 Preliminary chi-squared analyses 192 

The dataset was split into months, and each month was analysed separately. The null 193 

hypothesis (H0), that the proportion of fish per spawning component remained constant 194 

over time was tested. As the most representative months in terms of sampling (i.e. 195 
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evenness through time) were November for the autumn season, and January for the 196 

winter season (Figure 3), further analyses per ICES Divisions were conducted using data 197 

from these two months only. Separate analyses per ICES Division allowed for the 198 

investigation of spatial heterogeneity in the relative abundance of the spawning 199 

components. 200 

 201 

2.3.1.2 Multinomial model 202 

2.3.1.2.1 General GAM 203 

A multinomial model was constructed to investigate the temporal dynamics in the 204 

proportions of four different categories: AS, WS, and fish collected in autumn and winter 205 

that could not be assigned to a spawning component (Ua and Uw respectively). The 206 

purpose of fitting a multinomial model was to further investigate the results of the chi-207 

squared analyses by detailed analysis of the inter-annual fluctuations in the proportions of 208 

the different spawning categories. Thus, a GAM (using the R-package “VGAM” for 209 

Vector Generalized Additive Model; Yee, 2010), with a logit-link and multinomial 210 

distribution was fitted to yearly data as follows:  211 
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where tsy ,  is the number of individuals sampled in each category },,,{ WSUwUaASs∈  in 215 

year t, tn  is the total number of fish sampled in year t, tsp ,  is the proportion in different 216 

categories in year t, with ∑ =
=

4

1 , 1
s tsp , hence { }UwUaASs ,,'∈  and WS is the baseline 217 

level; and ( )tf s '  is a flexible spline function of year. Note that we are primarily interested 218 

in the dynamics of the proportions over time, hence the flexible spline function. 219 

 220 

The significance of the changes in the proportions by spawning category over time were 221 

tested using likelihood ratio tests between the time-varying model above and a model 222 

constrained to have constant spawner proportions over time. The maximum log-223 

likelihood for the constant proportion model was given by )ˆlog(
4

1 , st s ts py ×∑∑ =
, where 224 

sp̂  is the estimated constant proportion, and the difference in the degrees of freedom (df) 225 

obtained from the estimated df from the time-varying GAM model (can be non-integer) 226 

minus 3 (number of free parameters in the constant proportion model).  227 

 228 

2.3.1.2.2 Accounting for changes in fishing patterns 229 

In the CS, during the 1980s and 1990s, the predominant fishing market for herring was 230 

the Japanese roe (i.e. full gonads) market (Molloy, 2006). The roe fishery targeted the 231 

spawning grounds more intensively than the fishery that operated over the rest of the time 232 

series. A second multinomial GAM was used to investigate the potential effect of the roe 233 

fishery, which could introduce a selective bias in our proportions of spawners. The 234 

hypothesis that the roe fishery impacted on the spawner proportions in the catches was 235 

tested by including an additional binary variable (in the predictor of the GAM) with 236 
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yearly values reflecting whether the roe fishery occurred or not in a given year. 237 

Likelihood ratio tests were performed between the models including or excluding roe 238 

fishery to determine the effect of this variable on the model fit. 239 

 240 

2.3.1.2.3 Potential environmental drivers on spawning composition 241 

The relationships between the relative proportions of the spawning components predicted 242 

by the GAM, and the selected environmental parameters (i.e. NAO, AMO, SST and 243 

salinity) were modelled using beta-regressions, as appropriate for proportions (Cribari-244 

Neto and Zeileis, 2010). The two spawning components were analysed separately using 245 

the most appropriate model in each case. No collinearity could be detected between any 246 

of the environmental variables (Zuur et al., 2010). AIC criteria were used for model 247 

selection and variables were systematically removed from the full model based on their 248 

significance level calculated using likelihood ratio tests (using the R-package “lmtest”; 249 

Zeileis and Hothorn, 2002). The best model was reached when all variables selected 250 

showed a significant influence on the response variable, together with an overall best fit 251 

of the model. 252 

Local SST and salinity data were downloaded from the ICES website 253 

(http://www.ices.dk/ocean/data/surface/surface.htm) using the Marsden Square number 254 

“181;2” (i.e. the most representative of the CS area, between 55°N-50°N and 5°W-255 

10°W), where data from a total of 84 046 surface stations (<10m. depth) were used. 256 

Yearly autumn and winter averages during the period under study (1959-2009) were 257 

calculated for SST and salinity values, in order to describe local conditions during 258 

spawning. The winter NAO index (i.e. derived for the winter months of December to 259 
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March, which exhibit the strongest inter-decadal variability) have been extracted via the 260 

Climatic Research Unit (CRU: http://www.cru.uea.ac.uk/cru/data/nao/ for the years 1959 261 

to 2000; and from http://www.cru.uea.ac.uk/~timo/datapages/naoi.htm for 1999-2009). 262 

The AMO index, unsmoothed from the Kaplan SST V2, distributed by 263 

NOAA/ESRL/PSD1, was downloaded via 264 

http://www.esrl.noaa.gov/psd/data/timeseries/AMO/. A yearly average of the values from 265 

September in a given year to February the following year was calculated for this index to 266 

correspond with the timing of our biological data collection.  267 

 268 

2.3.2 Investigation of size trends within each spawning component  269 

A primary purpose of our investigations was to establish if the AS and WS components 270 

showed differences in mean-length and mean-weight, and if mean-length and weight 271 

within each component have changed over time. The total length l  (cm) and total weight 272 

w  (g) were modelled as functions of year y , and spawning component s  within the 273 

three different ICES Divisions and for the whole CS, using a GLM. As the response 274 

variables were continuous and positive, a gamma-distributed error term was chosen 275 

(McCullagh and Nelder, 1989). Spatial area (i.e. whole CS; ICES Division VIIj; ICES 276 

Division VIIg; ICES Division VIIaS) and spawning category (i.e. AS, WS, Ua, Uw) were 277 

treated as categorical variables (i.e. factors). To remove the potentially confounding 278 

effect of temporal changes in age-composition (Sinclair et al., 1982), the analysis was 279 

restricted to 2-winter ring herring (3 year-old fish, which were the modal age class in the 280 

overall dataset, and first age at 100% maturity (ICES, 2010)). The mean response (i.e. 281 

linear predictor of the GLM) for the single age-group was given by   282 
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3,,3,,, == = astastil α   (4) 283 

where i  is the individual fish, st ,α  is the average per year t  and by spawning component 284 

s , and a  the age of fish selected in the model.  285 

The significance of the difference between the spawning components in the mean-length 286 

through time was established via a likelihood ratio test between the model described by 287 

Equation (4) and a constrained version (Equation 5) which combined the spawning 288 

components:  3,3,,, == = atastil α    (5) 289 

The χ2  statistic is obtained from ( )( ) ( )( )( )4ln5ln2 LL −− , where ( )5L  and ( )4L  are the 290 

maximum likelihood values estimated using the linear predictor in Equation (5) (i.e. the 291 

null model of no differences between the spawning components) and Equation (4) 292 

respectively. The df are obtained from the number of years times the number of spawning 293 

components minus 1. 294 

The same procedure was used for modelling weight at age-3: 3,,, =astiw . 295 

 296 

2.3.3 The influence of spawning component proportions on trends in mean size  297 

The final analysis integrated the time series of mean-length and mean-weight with the 298 

time series of spawner proportions to establish if changes in the relative proportions of 299 

the spawning components could explain the observed trends in size-at-age. Combining 300 

the maximum likelihood estimates from the spawner proportions GAM with those from 301 

the mean-length or mean-weight GLM provided a prediction of the changes in mean-302 

length or mean-weight over time in the overall catch data. A weighted average is used 303 

whereby the mean-length or mean-weight of a spawning component in a given year 304 
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(Equation (4) with all ages) was weighted by the proportion of the component present in 305 

the year (Equations 1-3), i.e.  306 
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A component can be fixed to be an average over time, i.e. sts pp ˆˆ , =  or sts αα ˆˆ , =  while 308 

allowing the other to vary. The resulting predictions were compared to the observed 309 

average series to determine to what extent the observed changes in size could be 310 

explained by changes in the proportions of the spawning components and/or overall 311 

changes in mean-size. Different scenarios were tested by altering the constraints. 312 

Scenario 1: allowed the relative proportions of spawning components to vary over time 313 

(according to the variation in proportions observed in the catches) while mean-length or 314 

mean-weight were fixed parameters for the overall population (i.e. sts αα ˆˆ , = ). Scenario 2: 315 

modelled the relative proportions of the four spawning categories as fixed parameters to 316 

¼ each (i.e. 25.0ˆˆ , == sts pp ) while mean-length or mean-weight could vary over time 317 

(according to the observed trends in overall mean-length and mean-weight observed in 318 

the catches). Scenario 3: allowed temporal variability within both parameters. From each 319 

scenario, two sub-scenarios were also tested by removing either the AS or the WS 320 

component from the model (respectively, 0, == tASsp  or 0, == tWSsp ), to predict how 321 

mean-length and mean-weight would be affected by the complete removal of a particular 322 

spawning component (i.e. simulating an absence of spawning diversity within the CS 323 

herring stock). 324 

 325 
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All analyses were performed using the R statistical environment (R Development Core 326 

Team, 2009). The significance of the statistical analyses were all tested using the critical 327 

value of α = 0.05 (unless otherwise stated). 328 

 329 

3. Results 330 

The fishery was clearly seasonal, with approximately 90% of the catches taken in autumn 331 

and winter (Figure 3). All analyses were restricted to these two main seasons. A total of 332 

126 201 herring have been analysed in this study. Of these, 66 058 were caught in winter 333 

and 60 143 in autumn. 334 

 335 

3.1 Analysis of trends in the relative proportions of spawning components  336 

3.1.1 Chi-square analyses 337 

The null hypothesis (H0), that the ratio of spawning (i.e. AS in autumn months and WS in 338 

winter months) to non–spawning (i.e. Ua in autumn months and Uw in winter months) 339 

herring in the CS remained constant through time was rejected for each month (p<0.001). 340 

The variation in the proportions of the two spawning components also occurred at a finer 341 

spatial scale, i.e. in all ICES Divisions (p<0.001). 342 

 343 

3.1.2 Multinomial model 344 

3.1.2.1 General GAM 345 

The re-sampling procedure was effective at removing the effects of sampling bias (Figure 346 

4a and 4b). Overall fluctuations in the relative abundance of the spawning components 347 

appeared less marked once the sample size was kept constant through time (Figure 4b). 348 
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The effects of sampling bias were most evident in the trend of the WS component over 349 

time. While the model on raw data showed a relatively high proportion of WS during the 350 

early period of the study with an overall declining trend, using re-sampled data reversed 351 

the pattern, certainly due to an unusually high sampling effort in winter at the start of the 352 

time series (Figure 3c).  353 

 354 

Over the period of this study (1959-2009), several changes occurred in the composition 355 

of the catches with respect to spawning category (Figure 4). Significant variations in the 356 

relative proportions of the AS, WS, Ua and Uw components over time confirmed the 357 

previous chi-square results (likelihood ratio test: χ2=331.102, df=11.92, p<0.001). The 358 

AS component showed the strongest directional change in relative abundance over time 359 

(Figure 4b). This component exhibited a slight decrease at the beginning of the period of 360 

study (1959-1968) and subsequently rose to its highest level in the time series, averaging 361 

approximately 40% of the autumn/winter catches by 1990. After this peak-period, the 362 

relative abundance of AS declined steadily, and by the early 2000s, their number had 363 

dropped considerably to < 10% of the catches, the lowest proportion observed in any of 364 

the components during the study period (Figure 4b). The trend in the Ua component was 365 

diametrically opposed to the previously described AS one; the relative abundance of that 366 

component was high at the beginning and at the end of the time series (in the 1960s-367 

1970s and in the 2000s respectively). It is important to bear in mind that the trends in the 368 

Ua component (stages III-V in autumn) partly reflected changes in the relative abundance 369 

of winter spawning herring in the autumn fishery as some of these pre-spawning fish may 370 

have spawned in winter. 371 
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 372 

Variability in the WS component was less pronounced than in the AS component, 373 

displaying a slightly bimodal distribution over time: the first peak occurred around 1973, 374 

followed by a slight decrease in the 1990s (coinciding with the AS peak), and a second 375 

peak in the late 1990s (Figure 4b). Once again, the Uw pattern appeared as the negative 376 

reflection of WS, remaining low throughout the time series (proportions <20%), with 377 

maxima at the beginning and at the very end of the period of study, although there was a 378 

higher degree of uncertainty associated with the estimated proportions at the extreme 379 

ends of the time series (as indicated by the larger confidence intervals in figure 4b). 380 

 381 

Spatial heterogeneity in temporal variations in the proportion of spawners was also 382 

highlighted (Figure 5). In each Division, the relative abundance of the AS component 383 

reached a peak in the 1990s (consistent with the analysis of all ICES Divisions 384 

combined); however, the absolute proportion varied between areas (i.e. ~60% of the 385 

catches in Division VIIj; 40% in Division VIIg; only 20% in Division VIIaS). In Division 386 

VIIj, the AS component was always dominant relative to the WS component, except after 387 

2002 (Figure 5a), while in Division VIIaS the WS component was the dominant one 388 

(Figure 5c). In Division VIIg, dominance alternated between the WS and AS components 389 

over the course of the time series (Figure 5b). The WS component displayed a slightly 390 

bimodal trend in all ICES Divisions (consistent with the analysis of all ICES Divisions 391 

combined); this trend was most pronounced in Division VIIg (Figure 5b).   392 

 393 

3.1.2.2 Accounting for changes in fishing patterns 394 
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The binary parameter “roe fishery” did not improve the model fit as the vast majority of 395 

the p-values extracted from likelihood ratio tests performed for each re-sampled GAM 396 

(n=100 iterations) were non-significant (87 of 100 had p>0.05 and 99 of 100 had p>0.01). 397 

This confirmed that the observed trends in the spawning components were not merely an 398 

artifact of changes in this fishery.  399 

 400 

3.1.2.3 Potential environmental drivers on spawning composition 401 

Some environmental factors, both local and global, exhibited strong relationships with the 402 

relative proportions of spawners between 1959 and 2009 (Table 1). However, some 403 

unexplained source of fluctuation still remained as the models only explained 48% and 404 

34% (for AS and WS respectively) of variability described in the proportion of spawners 405 

through time. Using the AS component as response variable, the best likelihood ratio 406 

(Log-likelihood = 32.29, df = 6, p<0.001) and lowest AIC value (-52.58) were given by a 407 

model including NAO, AMO, averaged autumn SST and mean winter salinity as 408 

explanatory variables (Table 1). Using the WS component as response variable, the best 409 

likelihood ratio (Log-likelihood = 86.12, df = 6, p<0.001) and lowest AIC value (-160.25) 410 

were given by a model including the AMO index and averaged autumn SST, while 411 

accounting for changes in precision of the model as a function of these two explanatory 412 

variables (i.e. an additional fixed dispersion parameter was set to account for rather high 413 

heteroskedasticity) (Table 1).  414 

 415 

3.2 Investigation of size trends within each spawning component  416 
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Mean-lengths and weights at age-3 of AS and WS components showed a similar decline 417 

(Figure 6) to that observed in the un-segregated data (Figure 2). This decline was evident 418 

both in the overall CS area and in each ICES Division, but was less pronounced in 419 

Division VIIj, where mean-lengths and weights remained relatively constant over the 420 

time series (Figure 6c, d). On average, herring in the WS component had a lower mean-421 

length and mean-weight at age-3 than herring from the AS component (mean-length: χ2= 422 

27.176, df=146, p<0.001; mean-weight: χ2= 592.03, df=105, p<0.001). Yearly variability 423 

implied that the degree of distinction between the spawning components varied over 424 

time; the difference between the two components was greatest between the 1980s and 425 

2004 (Figure 6b, d, f, & h). 426 

 427 

3.3 The influence of spawning component proportions on trends in mean size  428 

Varying the spawning component structure within the catches produced very slight 429 

changes in mean-length and mean-weight of CS herring (Figure 7). The results of 430 

scenario 1 showed that when the mean-lengths and mean-weights of each spawning 431 

component were held constant over the time series, and the relative proportions of the AS 432 

and WS components varied according to the trend observed in the catch data, overall 433 

predicted mean-length and mean-weight remained almost constant, with a small peak 434 

occurring in the 1990s. This indicates that the dramatic changes in length and weight that 435 

are observed in the catches (Figure 2) cannot be explained by variation in the relative 436 

abundance of the AS and WS components. When one of the two spawning components 437 

was removed from scenario 1, the 1990s-peak either remained (because of AS) or 438 

disappeared (flattened with WS), showing the slight contribution of the numerous AS 439 
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component to this peak. Scenario 2, which allowed mean-length and mean-weight to vary 440 

while the relative proportion of the spawning components remained constant, resulted in 441 

mean-length and mean-weight patterns similar to the ones exhibited by the overall CS 442 

herring (Figure 7). This corroborated the results from scenario 1, showing that the mean-443 

lengths and weights in the catches over the time series were independent of the relative 444 

abundance of the spawning components. Scenario 3 allowed both mean-size and the 445 

relative abundance of the spawning components to vary and effectively modelled the real 446 

situation. This produced mean-length and mean-weight predictions quite similar to those 447 

generated in scenario 2 with slightly lower values between 1960-1970 and between 2000-448 

2009, but higher predicted values in the 1990s. Removing the WS component in scenario 449 

3 had the same effect as removing this component in scenario 2 (not illustrated), with an 450 

increase of mean-length and mean-weight predictions between 1980 and 2000. This 451 

corresponded to the period when the difference in mean-size between the AS and WS 452 

components was most pronounced. Removing the AS component (in scenario 3, as well 453 

as in scenario 2) showed the opposite effect with mean-length and mean-weight 454 

predictions slightly lower than when the two spawning components were present in the 455 

catches.  456 

 457 

4. Discussion 458 

The results of this study revealed annual variations in the relative abundance of the 459 

autumn and winter spawning components in landings of Atlantic herring in the CS, from 460 

1959 to 2009, at two spatial scales. Previous studies have highlighted short-term year-to-461 

year variability in the dominance of sympatric herring spawning components (Bierman et 462 
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al., 2010; Brophy et al., 2006). The current study describes a directional change over an 463 

exceptionally long time series, with an apparent cyclical alternation in the dominant 464 

spawning component. Long-term observations of spawning component proportions are 465 

more informative than short-term studies in terms of adapting management advice. 466 

 467 

When interpreting any time series of commercial catch data, the potentially confounding 468 

influence of changes in sampling intensity or fishing patterns due to management 469 

restrictions and/or market demands must be considered. The effect of the sampling bias 470 

was removed from the analyses by re-sampling procedure. In terms of fishing patterns, 471 

the CS herring fishery was fairly consistent for the duration of the time series, with two 472 

notable exceptions. As previously described, during the “roe fishery” period of the 1980s-473 

1990s, juveniles and herring without ripening gonads were discarded (i.e. the “Unknown” 474 

category in this analysis). Very few studies dealt with the roe fishery impacts on herring 475 

populations although this fishing pattern has been present in some other herring grounds, 476 

such as in British Columbia (Hay et al., 2008). Hay et al. (2008) found that while Pacific 477 

herring spawning patterns are temporally dynamic, no evidence of roe fishery-driven 478 

trends could explain these changes. Similarly, accounting for the roe fishery in our 479 

multinomial GAM analysis did not explain the pronounced rise and fall of the AS 480 

component, nor contribute to the temporal changes in the WS component. In addition, the 481 

increase in the strength of the AS component and the first peak in the WS component 482 

started in the mid-1970s, before the initiation of the roe fishery.  483 

From 1988 onwards, management measures to protect spawning herring were introduced 484 

in the CS in response to European Union fisheries management legislation (Molloy, 485 
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2006). A small spawning area is closed to the fishery for 16 days each year, within one of 486 

the three ICES Divisions, during the peak spawning time. The closure rotates yearly 487 

between the three ICES Divisions, so each spawning area is closed once over a three year 488 

period. If these closures were having an impact on the relative numbers of spawning 489 

herring in the catches, this should reflect the rolling nature of the closures i.e. occur every 490 

three years in each division in turn. In the current study, similar trends in the proportion 491 

of spawners were detected in all three ICES Divisions from the 1990s. Overall, it is 492 

unlikely that the observed temporal trends in the relative proportions of spawning 493 

components are an artifact of changes in sampling intensity or fishing patterns.   494 

 495 

There are two mechanisms which could both lead to changes in the dominance of one 496 

component relative to the other: either switching of spawning season occurs at the 497 

individual level, or productivity of one spawning component relative to the other 498 

changes. Variability could also result from a combination of the two processes. A 499 

constant level of switching over time with equal levels of exchange between spawning 500 

components would result in no changes in the relative strength of the AS and WS 501 

components. However, if under certain situations the rate of switching changed, then after 502 

several generations of switching between two spawning components, one component 503 

would become the dominate one. Alternatively, dominance could alternate between 504 

components over the time series because of a change in productivity of a spawning 505 

component (e.g. reproductive success, egg and larval survival) relative to the other. Thus, 506 

observed changes in the relative strength of the spawning components in the CS do not 507 

only imply either spawning season switching or fidelity.  508 
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Fidelity of herring populations to spawning area and season has been observed in the 509 

northwest (Wheeler and Winters, 1984) and northeast Atlantic (Brophy et al., 2006), 510 

confirming that seasonal spawning components may remain discrete over time (Iles and 511 

Sinclair, 1982). However, varying levels of spawning season switching have also been 512 

reported in short-term studies (Brophy et al., 2006; McQuinn, 1997b). Recent evidence 513 

suggests that herring to the west of the British Isles are constituted of a mixture of 514 

interconnected spawning groups rather than discrete stocks (Geffen et al., 2011). So far, 515 

switching rate has been assumed to be population-dependent. Whether the rate of straying 516 

observed in short-term studies reflects a fixed population trait that remains constant over 517 

longer time-periods or an adaptive characteristic that may change according to the 518 

conditions encountered remains to be established. Further field studies are needed that 519 

compare rates of fidelity/exchange both within- and between-populations over short and 520 

long time scales.  521 

It is not yet known to what extent the spawning season in migratory fish species such as 522 

herring is genetically determined or triggered by a combination of physiological and 523 

environmental factors. While some studies investigate differences in spawning herring 524 

populations using genetic proxies (Jørgensen et al., 2005; King et al., 1987; McPherson et 525 

al., 2003), herring spawning tactics also appear to be influenced by phenotypic variability 526 

(Jennings and Beverton, 1991; Winters and Wheeler, 1996). Although it is established 527 

that in herring the process of first maturation is triggered by a combination of 528 

physiological (size condition of fish) and environmental cues (e.g. January SST: Winters 529 

and Wheeler, 1996; photoperiodic cycles: McPherson and Kjesbu, 2011), the relative 530 

influence of genetics and environment on herring spawning behaviour (i.e. seasonal 531 
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strategy) remains unresolved. The results of this study highlight that the timing of 532 

spawning does show directional changes, either due to adaptive selection mechanisms 533 

operating on the population or as a result of individual responses to certain external cues.  534 

 535 

The observed influence of NAO, AMO, SST and salinity on the relative strength of the 536 

components suggests that spawning in one rather than in the other season confers an 537 

advantage in terms of energy use and fitness under certain environmental conditions. 538 

Surprisingly, AMO was not highly correlated with SST measurements from the CS, 539 

possibly due to poor quality of local environmental data (i.e. very discontinuous time 540 

series of SST and salinity for the studied period). While SST and AMO would be 541 

expected to co-vary, in Irish waters, AMO and NAO fluctuations were reported to only 542 

account for 23% and 9% respectively, of interannual variability in local SST (Cannaby 543 

and Hüsrevoğlu, 2009).  544 

Environmental fluctuations could operate on any life-stage and could influence various 545 

biological processes such as fecundity, larval survival or recruitment to the adult stock 546 

(Rijnsdorp et al., 2009). For example, AS herring in the North Sea show less resistance to 547 

climate change, in terms of larval survival (Hufnagl and Peck, 2011); and larval survival 548 

in cod appears negatively impacted by increasing SST conditions together with negative 549 

NAO periods (Lehodey et al., 2006). The spawning ability or reproductive cycle of adult 550 

Atlantic herring has often been linked to temperature conditions (Jennings and Beverton, 551 

1991; Winters and Wheeler, 1996). In the western Atlantic, similar alternation in the 552 

dominance of AS and WS components is described through modelling (Melvin et al., 553 

2009). It is suggested that warming waters favour AS. Our study showed the opposite 554 
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pattern in the CS as the peak in the AS proportions in the catches during the 1980s-1990s 555 

coincided with a period of negative AMO (i.e. colder than average SST) together with a 556 

persistent positive NAO phase. In the CS, strong winds (i.e. positive NAO) could favour 557 

mixing of the water column in summer resulting, together with colder and more variable 558 

SST conditions, in better food availability for planktivorous fish such as herring. 559 

Favourable feeding conditions in herring populations are linked to better gonad 560 

development, higher fecundity and improved reproductive success (Engelhard and Heino, 561 

2006; Kennedy et al., 2010; Ma et al., 1998; Óskarsson et al., 2002). Enhanced feeding 562 

during summer, together with colder water temperatures, may trigger earlier spawning. 563 

Indeed, AS (or herring spawning in warmer waters) have been found to exhibit 564 

significantly higher fecundity than WS herring (Blaxter, 1985; Jennings and Beverton, 565 

1991). In another migratory species, the European flounder (Platichthys flesus) cooler 566 

temperatures lead to earlier migration and spawning in the English Channel (Sims et al., 567 

2004). Alternatively, more stormy conditions during winter may have a greater impact on 568 

larval dispersal and survival in the WS than in the AS component as WS herring are at a 569 

more vulnerable stage of development at that time of year. Since the late-1990s, local 570 

SST increased around Ireland (Cannaby and Hüsrevoğlu, 2009; Pinnegar et al., 2002), 571 

coinciding with a reversion to a positive AMO phase. During the same period there was a 572 

drastic reduction of spawning events in autumn and a switch back to WS dominance (or 573 

“retraction” of the spawning strategy to winter months only). When autumn SST were too 574 

warm for herring to spawn, spawning in winter appeared to be favoured (Haegele and 575 

Schweigert, 1985). Similarly, spring-spawning herring in the North Sea are able to 576 

compensate for increasing SST better than the AS component (Hufnagl and Peck, 2011).  577 
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Concomitant fluctuations in environmental parameters appear to be linked to the direction 578 

and ratio of change in the relative strength of spawning components in herring 579 

populations, and act to either enlarge or reduce the spawning season optimal window. 580 

According to external forcing, the entire spawning-range window of herring is likely to 581 

shift either spatially (Melvin et al., 2009), or temporally (as shown in this study). The 582 

relatively low explanatory power of the environmental analyses suggested that the 583 

mechanisms underlying the trends in the spawning components are complex and that 584 

multiple interactions between fishing related and environmental factors should also be 585 

considered. Nevertheless, in a recent physiological modelling approach coupling 586 

biological characteristics of North Sea herring with local conditions, Hufnagl and Peck 587 

(2011) showed that the timing of spawning was restricted by temperature, food 588 

availability and day-length (latitude). Our study further warrants the need for such bio-589 

physical modelling studies, particularly taking into account the CS environment. 590 

 591 

Regardless of what is driving trends in the relative proportions of spawners, the loss of a 592 

spawning component in a population could impact on the ability of a stock to cope with 593 

external forcing (e.g. fishing pressure, changing environmental conditions). Herring in 594 

the CS, as in other ecosystems worldwide, have probably adopted different spawning 595 

season as one of their survival strategies (Melvin et al., 2009; Sinclair and Tremblay, 596 

1984). However, the abundance of the AS component relative to the WS component in 597 

the CS is now at its lowest for the period of this study (from 1959 to 2009). While losing 598 

this ability to spawn in different seasons (i.e. their spawning diversity), herring 599 

populations’ resistance and resilience to changes in environmental conditions and to 600 
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fishing pressure, could be considerably impaired (Melvin et al., 2009; Secor et al., 2009). 601 

For example, without the ability to spawn in the more clement autumn months, the stock 602 

could be vulnerable to recruitment failures; in the North Sea warmer than usual SST 603 

coincided with recruitment failures and low larval survival in the AS component (Nash 604 

and Dickey-Collas, 2005; Payne et al., 2009). Thus potential loss of sub-stock diversity 605 

could contribute to sudden stock collapse as modelled for Canadian cod (Sterner, 2007). 606 

The current state of the overall CS stock is considered to be healthy, since it has rebuilt 607 

from historically low levels (ICES, 2010). The AS component recovered from the very 608 

low levels observed in the 1960’s. Therefore the stock may be reasonably robust to 609 

fluctuations in the seasonal components and complete loss of a sub-group may be 610 

unlikely. Nonetheless, the recent decline in sub-stock diversity signals caution for the 611 

future management of the CS fishery. 612 

 613 

Previous studies have compared growth difference in seasonal herring populations at the 614 

egg, larvae or juvenile stages (Blaxter and Hempel, 1963; Brophy and Danilowicz, 2003; 615 

Jones, 1985). The present study highlighted differences in size-at-age between adults 616 

from the AS and WS components in CS herring. King (1985) analysed morphological 617 

differences among spawning aggregations of herring populations to the west of the 618 

British Isles and concluded that (1) the differences between stocks are small, but (2) 619 

herring from eastern part of the CS were distinct from neighbouring stocks; these findings 620 

are consistent with our results. A recent investigation of herring stock structure to the 621 

west of the British Isles showed that the inclusion of length-at-age information with 622 

otolith microchemistry data improved classification success (Geffen et al., 2011). 623 
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Although AS fish were on average, significantly bigger than WS fish, the groups could 624 

not clearly be distinguished based on this single size criterion due to the pronounced 625 

yearly variability in size within each component. Jørgensen et al. (2005) encountered a 626 

similar overlap in size distributions when trying to distinguish Baltic Sea herring 627 

spawners using mean-length characteristics. A meta-analysis on different herring 628 

populations in the North Atlantic highlighted that SST was a determinant factor for 629 

growth at the species level (Brunel and Dickey-Collas, 2010).  However, the AS and WS 630 

components in the CS inhabit the same spatial area, thus experiencing the same variations 631 

in water temperature. Therefore, more complex mechanisms (e.g. density-dependence at 632 

the sub-stock level, genetic constraints) must underlie the observed growth differences 633 

between these two spawning components. Although small, the difference in size between 634 

AS and WS herring in the CS may have consequences for the effects of fishing on the 635 

dynamics of the individual components. 636 

 637 

In this study, not only did the relative proportions of spawners vary through time, but 638 

their respective size-at-age also fluctuated significantly over time. AS and WS herring 639 

displayed similar temporal trends in mean-length and mean-weight, with both spawning 640 

components showing a decrease in growth over time from the late 1970s. In addition, the 641 

scenario testing analyses showed that complete loss of one spawning component from the 642 

CS population could not reproduce the observed decline in growth rates. As there was a 643 

time-lag of ca. 5 years between the observed changes in the growth parameters (between 644 

1980 and 1985) and the change in spawning stock composition (between 1985 and 1990), 645 

it is possible that the changes in size-at-age of CS herring in the catches led to the 646 
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observed changes in the relative proportions of spawners over time (via fishing selection, 647 

by acting on the maturation process), rather than the other way round. Finally, the 648 

observed size-at-age trends are not attributable to changes in stock structure of CS 649 

herring. Other potential factors such as climatic variability coupled with changes in 650 

fishing pressure need to be examined. 651 

 652 

5. Conclusion 653 

The present study revealed changes in the long-term dominance of seasonal spawning 654 

components in CS herring catches which were partly attributed to both local (i.e. averages 655 

autumn SST and winter salinities) and global (i.e. the NAO and AMO indices) 656 

environmental factors. The seasonal components showed differences in growth, which 657 

could lead to differential impact of fishing pressure and selectivity when both 658 

components are fished by the same fleet (i.e. during spatially overlapping periods). 659 

However, the observed changes in spawner proportions did not explain the recent decline 660 

in the overall size-at-age of CS herring catches. While the stock complex or 661 

metapopulation may be a more practical unit for stock management, local sub-stocks 662 

should be systematically monitored to examine the spawning potential and life-cycle 663 

complexity that confers resilience to the stock in the face of changing environmental 664 

conditions and to ensure viable local fisheries. 665 
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Table and figures legends 895 

Table 1. Results from the two best models selected using beta-regression analyses 896 

between AS or WS proportions (as extracted from the multinomial GAM on re-sampled 897 

dataset) and environmental parameters (NAO, AMO, SST and salinity). AS and WS were 898 

analyzed separately, hence the different environmental variables selected for each model. 899 

 900 

Figure 1. Map of the Celtic Sea to the south of Ireland, northeast Atlantic. In the present 901 

study, the CS comprises ICES divisions VIIj, VIIg and VIIaS (shaded sea areas). Dark 902 

squares represent the main Celtic Sea herring spawning areas (based on highest yearly 903 

percentiles of density distribution curves of larval abundance, tracked by larval surveys 904 

conducted in the Celtic Sea between 1979 and 1985). Dotted line represents -200 meter 905 

depth limit. 906 

 907 

Figure 2. Irish-caught Celtic Sea herring mean-length-at-age from 1959 to 2009 (top 908 

panel), and mean-weight-at-age from 1975 to 2009 (bottom panel). Bold lines represent 909 

the overall mean-length (top panel) and overall mean-weight (bottom panel) trends over 910 

time when all ages are gathered. 911 

 912 

Figure 3. Sampling effort over time: in terms of numbers of fish collected in each season 913 

(a. b. and c.); and expressed as a proportion of the total yearly sampling effort (d. e. and 914 

f.). The selected seasons from left to right were all seasons of the year (a. and d.); autumn 915 

months (b. and e.); winter months (c. and f.). Autumn and winter data represent 90% of 916 

the catch data of CS herring for the period of study (1959 to 2009). 917 
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 918 

Figure 4. Comparison of the predictions given by the multinomial GAM analyses fit to a. 919 

the raw proportions of spawning component over time (1959-2009), and b. re-sampled 920 

datasets of 50 fish per season, after averaging 100 re-sampling iterations. Points represent 921 

the observed individual data from 1959 to 2009, and lines show the fitted values for each 922 

spawning component with grey bands highlighting the 95% confidence intervals on the 923 

re-sampled curves.  924 

 925 

Figure 5. Multinomial generalized additive model (GAM) fit to the re-sampled dataset, 926 

predicting the relative proportions of each spawning category per ICES Division (a. 927 

Division VIIj, b. Division VIIg and c. Division VIIaS) over time from 1959 to 2009. No 928 

samples were collected from ICES Division VIIj prior to 1968. Points show the 929 

individual data with colour code associated with the spawning category. Lines represent 930 

AS (black) and WS (grey), while dashed lines are for Ua (black) and Uw (grey). The 95% 931 

confidence intervals appear as grey bands (respectively dark grey for AS and WS; light 932 

grey for Ua and Uw). 933 

 934 

Figure 6. Mean-length in centimetres (left panels) and mean-weight in grams (right 935 

panels) fits of ages-3 AS and WS herring through time for the overall area of study (a. 936 

and b.) and per ICES Divisions (c. and d. Division VIIj; e. and f. Division VIIg; g. and h. 937 

Division VIIaS). Solid and dashed lines represent the average and 95% confidence 938 

intervals, respectively, by spawning component: AS (black), WS (grey). 939 

 940 



 

 40 

Figure 7. Different scenarios of mean-length in centimetres (top panel) and mean-weight 941 

in grams (bottom panel) predictions over time from generalized linear model (GLM) fits, 942 

with Scenario 1. Relative proportions of spawning-components varying over time and 943 

overall mean-length fixed, also when removing WS or AS component from the 944 

proportion estimates (dashed lines); Scenario 2. Relative proportions of spawning 945 

categories fixed to ¼ each, and mean-length varying over time according to the variation 946 

observed in the catches (dotted lines); Scenario 3. Relative proportions of spawning-947 

components and mean-length varying over time (both according to the variation observed 948 

in the catches), also when removing WS or AS component (bold lines). As a basis for 949 

comparison, the observed overall mean-length and mean-weight of CS herring over the 950 

period of the study are also highlighted (grey stars). 951 
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Table 1. 952 

 Estimate Standard error Z statistics p-value 
 AS WS AS WS AS WS AS WS 
Intercept -14.13 4.03 7.87 0.50 -1.80 7.98 0.073 1.53e-15 

SST (autumn) -0.22 -0.18 0.10 0.04 -2.29 -4.41 0.022 1.30e-05 
Salinity (winter) 0.48 - 0.24 - 2.03 - 0.043 - 

NAO index 0.18 - 0.08 - 2.37 - 0.018 - 
AMO index -1.59 -1.05 0.46 0.28 -3.46 -3.69 0.0005 0.0002 
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Figure 1. 954 
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Figure 2. 956 
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Figure 3. 958 

 959 



 

 45 

Figure 4. 960 

 961 



 

 46 

Figure 5. 962 

 963 



 

 47 

Figure 6. 964 
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