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Dependence on a relatively small sample size is generally viewed as a big disadvantage for 
survey-based assessments. We propose an integrated catch-at-age model for research vessel 
data derived from multiple surveys, and illustrate its utility in estimating trends in North Sea 
plaice abundance and fishing mortality. Parameter estimates were obtained by Bayesian 
analysis, which allows for estimation of uncertainty in model parameters attributable to 
measurement error. Model results indicated constant fishing selectivity over the distribution 
area of the North Sea plaice stock, with decreased selectivity at older age. Whereas separate 
analyses of survey datasets suggested different biomass trends in the southeast than in the 
western and central North Sea, a combined analysis demonstrated that the observations in 
both subareas were compatible and that SSB has been increasing over the period 1996–2005. 
The annual proportion of fish that dispersed in a northwesterly direction was estimated to 
increase from about 10% at age 2 to 33% at age 5 and older. We also found higher fishing 
mortality rates than reported in ICES assessments, which could be the consequence of 
inadequate specification of catchability-at-age in this study or underestimated fishing 
mortality by the conventional ICES assessment, which relies on official landings figures. 
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Introduction 
For a number of years, fishery management authorities have tried to limit fishing mortality 
through a total allowable catch (TAC) regime (Holden, 1994). In Europe, TAC advice is 
provided annually by the International Council for the Exploration of the Sea (ICES) and 
based on stock assessments (Daan, 1997). The science used to assess commercially exploited 
stocks is still dominated by population models developed some fifty years ago (Beddington et 
al., 2007). The most common assessments currently rely on catch-at-age data that are 
conventionally analysed by virtual population analysis (VPA)-type methods, e.g. eXtended 
Survivors Analysis (XSA; Shepherd, 1999). Such methods are dominated by commercial 
landings data, especially if fishing mortality for the stocks considered is high, and have few 



(if any) underlying statistical distribution assumptions. Consequently, estimated stock trends 
may be misleading whenever official landings figures are not representative of true catches 
(e.g. because of illegal landings, discards, or bycatch in other fisheries), whenever significant 
changes in catchability have not been taken into account, or spatially heterogeneous trends in 
exploitation have not been properly considered (Kraak et al., 2008). Unless the TAC includes 
discards and/or there is 100% observer coverage, the proportion of the catch not included in 
the official landings figures is likely to increase with a restrictive TAC regime, leading to an 
increasingly biased perception of stock status. 

Cook (1997) first presented an analytical model for stock assessments based solely on 
survey data that are insensitive to misreporting or changes in catchability. Cook’s model has 
formed the basis for SURBA, a computer package for the analysis of research vessel data 
(Needle, 2003). Although the method does not allow estimation of absolute population size, it 
does reveal population trends by fisheries-independent means, and provided that survey 
catchability is specified correctly, it yields an estimate of fishing mortality that should be 
comparable with that of VPA-type methods. A major drawback of survey-based assessment is 
that estimates of fishing mortality are often highly sensitive to noise in the data (Cook, 1997). 
One way to reduce this sensitivity is by constraining the estimable parameters, e.g. through 
the addition of penalty terms to the objective function. This impacts the outcome greatly, but 
without providing a clear interpretation (Needle, 2003). Given that parameter estimation in 
SURBA relies on a least squares method, its inability to provide a quantification of 
uncertainty for relevant parameters is a serious shortcoming. 

As the precautionary approach has now become a key concept in fisheries management, 
uncertainties in stock assessments, be they survey-based or not, have to be taken into account. 
Numerous stochastic assessment methods have been proposed (see Lewy and Nielsen, 2003, 
plus the references therein), of which those that fall within the Bayesian framework have the 
advantage that prior beliefs about parameters can be incorporated into the estimation 
procedure (Punt and Hilborn, 1997). Although Bayesian methods have been criticized for 
their potential to give too much weight to vested interests (Cotter et al., 2004), they have 
proved insightful when applied to virtual population dynamics (Virtala et al., 1998; Calder et 
al., 2003) and to real catch-and-effort data (Millar and Meyer, 2000; Harwood and Stokes, 
2003). Bayesian assessment methods based solely on survey data have not been developed 
until recently (e.g. Hammond and Trenkel, 2005; Porch et al., 2006). 

The dependence on a relatively small sample size is generally viewed as the biggest 
disadvantage in performing survey-based assessments. Because the fishing effort of surveys 
constitutes just a fraction of the commercial fishing effort, research vessel data are inherently 
less precise (in the sense that observed numbers-at-age are more affected by sampling error) 
than commercial catch data. Although there are usually multiple surveys carried out on a 
particular stock, integration of different survey data in a single survey-based assessment has 
not been undertaken until recently (Trenkel, 2008). Most surveys have distinct characteristics 
regarding geographic area, time of year, and fishing gear used, which are all likely to affect 
the measurements. Still, this is no reason not to consider an integrated analysis of multiple 
surveys, especially because they already act in combination when “tuning” VPA-type 
assessments. Moreover, as research vessels tend to perform routine hauls at stratified random 
locations, survey data are sensitive to changes in the spatio-temporal distribution of a fish 
stock over time and across ages. This sensitivity may partly explain the poor agreement 
between stock trends estimated from multiple surveys separately, especially for the North Sea 
plaice (Pleuronectes platessa) stock (Cook, 1997; Needle, 2003), and it underscores the need 
for a combined analysis. 

Here we propose an integrated catch-at-age model for research vessel data, derived from 
two surveys covering distinct parts of the distribution area of North Sea plaice. Parameters are 
estimated in a Bayesian context using hierarchical prior distributions for global abundance 
indices, which allows the estimation of measurement error. Measurement error is a 
consequence of the way in which samples are taken and processed in the survey, e.g. the 
timing of the survey or choice of fishing gear (Harwood and Stokes, 2003). The results 
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demonstrate that integrated analyses yield superior model fit to separate analyses, and 
partially solve the previously reported inconsistencies therein. 

 
Methods 
Data 
Analysis is based on the age-disaggregated abundance indices obtained through the 
international beam trawl survey (BTS), as derived from the two Dutch research vessels RV 
“Isis” and RV “Tridens II”. The survey is coordinated by ICES and its primary aim is to 
obtain fisheries-independent stock indices, to be used in stock assessments for North Sea 
plaice and sole (Solea solea). The BTS is carried out with an 8 m beam trawl and takes place 
over a 5-week period in August/September each year. Indices are provided per ICES rectangle 
and reflect a standardized average of up to four hauls. Indices per ICES rectangle are 
combined into age-disaggregated global abundance indices by survey per year, calculated as 
the average number of plaice caught per hour trawled by ICES rectangle over a fixed survey 
area. 

The BTS was carried out with RV “Isis” from 1985 on and with RV “Tridens II” from 
1996 on. Together, the two research vessels roughly cover the distribution area of the North 
Sea plaice stock. However, the spatial distribution of sampling stations is such that RV “Isis” 
supplies information on the southeast of the North Sea and RV “Tridens II” information on 
the western and central North Sea (Figure 1). For the purpose of this analysis, we restricted 
ourselves to the period where information from both research vessels was available, i.e. to the 
10-year period 1996–2005. The two research vessels provide data on nine age classes, with 
the last age class denoting a plus-group. Because the 1996 year class was misinterpreted to be 
the 1995 year class when it first recruited into the survey, there was no information on the 
first two age classes in 1997 (ICES, 2003)  

Global abundance indices for the younger age classes derived from RV “Isis” were 
markedly higher than those from RV “Tridens II”, whereas the latter produced higher indices 
for older ages (Figure 2a and b). Inspection of the indices across cohorts makes it clear that 
VPA-type analyses cannot apply to the separate population matrices, unless one assumes that 
catchability varies strongly across ages, over the years, and between the two research vessels. 
In order to apply an integrated catch-at-age model to the combined population matrices, 
global abundance indices were corrected for differences in distribution area of sampling 
stations between the two research vessels. The survey area of RV “Isis” was 0.55 times the 
survey area of RV “Tridens II”, so the abundance indices of RV “Isis” were multiplied by this 
fraction. The same procedure was applied to the standard errors (s.e.s). Coefficients of 
variation (CVs) per division of the s.e.s by the corresponding global abundance indices, were 
transformed to s.e.s on a logarithmic scale prior to model fitting (Wasserman, 2004). 

The relative s.e.s of abundance indices over the age range followed a U-shaped pattern 
(Figure 2c and d). The CVs at the younger age classes were particularly high for global 
abundance indices from RV “Tridens II”, whereas those for the older age classes were 
especially high for global abundance indices from RV “Isis”. This pattern arose mainly 
because the variation between individual indices was relatively low at high abundance 
indices, and vice versa. 

 
Population dynamics model 
The basic equations of the population dynamics are given by Cook (1997). Briefly, a 
particular cohort with an initial number of recruits Ry in year y (assumed to be age 1) is 
described by 
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where Na,y is the number of fish of age a in year y, and Za,y the average total mortality rate 
experienced from age a to age a + 1 and from year y to year y + 1. Furthermore, the usual 
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assumption is made that total mortality is the sum of natural mortality M and fishing mortality 
F. The latter is defined to be the product of an age-specific component sa, also termed the 
selectivity of fishing mortality, and a temporal component Fy. As sa and Fy are multiplied, one 
parameter needs to be fixed in order to scale the others in estimation. In our approach, we 
follow Cook (1997) and scale the mean of the year effects to 1. 

The age-disaggregated abundance indices can be related to the numbers-at-age by 
assuming a linear relationship, the proportionality of which may depend on age through 
differences in catchability q. In the absence of measurement error, the true index μ, defined on 
a logarithmic scale, may be written in recursive form as 
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Integration of the different survey data in a single population dynamics model was 

considered as follows. As plaice grow, they disperse gradually from the shallow nursery areas 
to deeper waters (Rijnsdorp and van Beek, 1991). This process occurs roughly from the area 
covered by RV “Isis” to that covered by RV “Tridens II”. To accommodate for this dispersion 
in the population dynamics model, the basic equations were modified accordingly: 
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Here, the superscripts denote the survey from which observations are taken: (1) primarily 
relates to the number of fish in the southeast, and (2) to the number of fish in the western and 
central North Sea. Fish experience mortality rates that are age- and possibly area-specific. 
Over the years, fish move from the southeast to the western and central North Sea at an age-
specific dispersal rate Da. For simplification, we assume that dispersion and mortality are 
competing hazards. 
 
State-space modelling framework 
Our model consists of two layers: it relates global abundance indices to an unobservable 
population state and specifies how consecutive states are related through population 
dynamics. This combination defines a state-space model (Chatfield, 1992). To cast our 
approach in the state-space modelling framework, we have to identify a state vector [Equation 
(4)], an observation (or measurement) equation (5), and a transition (or process) equation (9). 
Denote the state vector Фy in year y in transposed form by 
 
 ,   (4) ),,,,,,,( )2(

,
)2(

,2
)2(

,1
)1(
,

)1(
,2

)1(
,1

T
yAyyyAyyy NNNNNN KK=Φ

 
where A denotes the last age class considered in the model. The observation equation relates 
the vector of age-specific survey abundance indices, 

, to the state vector Ф),,,,,,,( )2(
,

)2(
,2

)2(
,1

)1(
,

)1(
,2

)1(
,1

T
yAyyyAyyy xxxxxxX KK= y in year y, assuming 

multiplicative observation errors: 
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where, q is a vector of catchability coefficients with separate values per age that are the same 
for the two surveys, i.e. 
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The observation error is made up of two components, uy and vy. By uy we denote 

measurement errors, which are assumed to be multivariate normally distributed with zero 

means and covariances, and variances  that depend on the survey in question (denoted 
by the superscript s). By v

)(2 s
uσ

y we denote a vector of sampling variances of the global abundance 
indices, which are introduced by the fact that abundance indices are estimates. The 
distribution of this error is also assumed to be multivariate normal with zero means and 

covariances, and variances  that are age- and year-specific. 
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The state-space model is specified by the transition equation 
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where Gy is a (2A × 2A) updating matrix, that looks like 
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The vector ry denotes the numbers of recruits present in the month of the survey in a specific 
year y. It is assumed that recruits are present in both survey areas. For completeness, we 
introduce process error in the population dynamics through the vector wy, but only consider 
the case that wy has zero variance, i.e. we only consider deterministic population dynamics. 
 
Parameter estimation 
The traditional objective in state-space modelling is to estimate the state vector in the 
presence of noise (Chatfield, 1992). Our prime objective was to estimate the coefficients of 
the updating matrix, i.e. the parameters describing mortality and dispersion. Because the 
population dynamics are not defined for a plus-group, estimation was restricted to the age 
range 1–8. With A = 8, therefore, one needs to estimate seven coefficients for selectivity as 
well as nine terms describing the trend of fishing mortality over the period 1996–2005 for 
each survey. Numbers-at-age in the first year, Φ1, also have to be estimated, as well as the 
survey-specific numbers of recruits that have joined the stock since the last survey in each 
year. In addition, we provide an estimate of the variance attributable to measurement error for 
each survey. The sampling variances of the global abundance indices are calculated outside 
the model (as described above). Integration of the different survey data requires estimation of 
another seven dispersion coefficients. Consequently, the number of parameters to be 
estimated in the integrated model is 75 at most (for 156 data points). Separate analyses of 
BTS abundance indices from RV “Isis” and from RV “Tridens II” were obtained by setting all 
values in the age-specific migration vector D to zero. This constitutes our separate model 
(subsequently labelled Model A). To investigate whether the number of free parameters could 
be reduced without loss of predictive deviance, we performed a sequence of integrated model 
analyses. The general two-zone model (Model B) allows for different trends in fishing 
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mortality, different selectivity, and different measurement error between zones. Starting from 
this general model, we constructed nested models (Models C–I) by setting sa, Fy, or σu 
constant between zones or combinations thereof. 

Note that natural mortality was fixed prior to parameter estimation, as were the 
coefficients of the catchability vector q [Equation (6)]. For comparability with ICES 
assessments, we set the annual rate of natural mortality to 0.1 and considered different values 
in sensitivity analyses (M = 0.05, 0.20, and 0.50). For comparability with Cook (1997), we 
assumed constant catchability across ages and survey, qa = q for both surveys. In sensitivity 
analyses, we also considered a slowly decreasing catchability with age, i.e. qa = 0.95qa–1, as 
well as a slowly increasing catchability with age, i.e. qa = (0.95)–1qa–1. Catchability 
coefficients were scaled to a maximum of 1 for both surveys. Parameter estimates were 
obtained by Bayesian analysis: 
 
  )()|()|( θθθ pXpXp ∝ ,     (8) 
 
where p(X | θ) is the likelihood function and p(θ) the prior distribution (Gelman et al., 2004). 

Previous applications of survey-based assessment (Cook, 1997; Needle, 2003) focused on 
the use of abundance indices in least squares estimation. In doing so, they ignored uncertainty 
of the estimates. One of the major advantages of Bayesian data analysis is the flexibility with 
which observable outcomes (indices) can be modelled conditionally on certain parameters 
(variance of indices), which themselves are given a probabilistic specification in terms of 
further parameters (Gelman et al., 2004). Such a hierarchical model enables us to separate the 
sampling variance of the global abundance index from measurement error. In our model, the 
likelihood function is the normal probability density function, defined as 
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where, τ is the inverse of the variance (termed precision) of the index x, which is assumed to 
follow a lognormal distribution, and 
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This makes our model hierarchical with regard to parameter estimation, and allows the 

estimation of measurement error  separately from the sampling variance . We 
constrained the likelihood function to non-missing data. 
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The model parameters greatly outnumber the number of free parameters, because the joint 
prior for the model is determined using conditional distributions. The variance of vy is 
estimated outside the model, and we only consider the case that wy has zero variance, so it is 

enough to specify the prior on θ = ( , , , , , ). As uninformative 
priors have not been identified for the current model, we aimed to construct weakly 
informative priors. The priors were all restricted to be positive, with uniform probability 
below some upper boundary (Table 1). The upper boundary for the variance of measurement 
error was informed by the observation that the CVs attributable to sampling variance appeared 
to have an upper bound of 100%, and we wanted to allow for the possibility that the variance 
of measurement error is larger than sampling variance. Alternatively, we fitted an inverse-
gamma distribution to the sampling variance, and used this as a prior for the variance of the 
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measurement error. Sensitivity of results to priors for fishing mortality, selectivity, and 
dispersion was examined by considering lognormal distributions that had comparable 0.95 
quantiles, but lower expectation (Table 1). 

Parameter estimates were obtained by Markov chain Monte Carlo (MCMC) simulation, 
using OpenBUGS version 1.4. In standard runs, ten chains using Gibbs sampling were run to 
estimate the joint posterior distribution (Gelman et al., 2004). Each run was initialized by 
drawing random starting points from roughly overdispersed distributions (with respect to the 
priors) for the free parameters. Each MCMC chain ran for 5000 iterations, after a burn-in 
period of 5000, and every 50th iteration was stored to remove the possible effect of 
autocorrelation. Thus, we stored a total of 10 times 100 realizations, from which we obtained 
quantiles of the posterior distributions. 

Convergence was monitored in two ways. First, the trajectory of the ten chains of each 
parameter was inspected visually in order to assess the extent to which the chains mixed. 
Second, the convergence of each parameter was assessed by calculating a scale reduction 
factor R that roughly measures the ratio of the variance between chains to the variance within 
chains and should converge to 1 when stationarity is reached (Gelman et al., 2004). 

Model complexity was measured by estimating the effective number of parameters pD, 
which can be thought of as the number of unconstrained parameters in the model (with 
constraints depending both on the data and on the priors). The posterior mean deviance, which 
is defined as –2 times the log-likelihood, has been suggested as a Bayesian measure of model 
fit or adequacy. This value is allowed to be negative, because a probability density can be 
greater than 1, e.g. if it has a small range or small standard deviation. Adding pD to the 
posterior mean deviance gives the deviance information criterion (DIC) for comparing 
models, which is approximately equivalent to Akaike’s Information Criterion in models with 
negligible prior information (Spiegelhalter et al., 2002). Models are penalized to have larger 
DIC both by the deviance (the larger this is, the worse the fit) and by pD, so favouring models 
with a smaller number of effective parameters. As a rule of thumb, models receiving DIC 
within 1–2 of the model with the lowest DIC should be considered as credible, whereas those 
with higher values receive considerably less support (Spiegelhalter et al., 2002). 

After fitting the model, spawning-stock biomass (SSB) was calculated as the sum of the 
product of the estimated numbers-at-age, observed weight-at-age, and assumed maturity-at-
age. Maturity was set to zero at the age of recruitment, 50% in age classes 2 and 3, and 100% 
at older ages. For graphical output, we used median estimates together with 95% credible 
intervals (ranging from the 2.5th to the 97.5th quantiles of the simulated posterior 
distributions). In common with conventional ICES assessments, the annual rate of fishing 
mortality was averaged over the age range 2–6. We compared the results of our model with 
the ICES assessment (ICES, 2008), to a Bayesian catch-at-age model that was made as similar 
as possible to the ICES assessment (Borges et al., 2007), and to a Bayesian survey-data-only 
model that uses the same parameterization as SURBA (Bogaards et al., 2007). 
 
Results 
Using the separate Model A, the estimated rate of fishing mortality was several times higher 
according to RV “Isis” data than to RV “Tridens II” data. There was also great disparity in the 
estimate of selectivity: fishing mainly affected young fish in an analysis based on RV “Isis” 
data, but was directed at the older age classes in the analysis with RV “Tridens II” data 
(Figure 3). 

Models that allow for dispersion from the southeast to the western and central North Sea 
provided a significant improvement over separate subarea analyses, in terms of both deviance 
and DIC (Table 2). All integrated models demonstrated a similar departure from the separate 
model: fishing mortality fluctuated on a more or less similar level in the southeast as in the 
western and central North Sea, and was unequivocally directed at the younger age classes. 
The model that presumed constant selectivity between zones (Model C) seemed more 
adequate than the general integrated model, which allowed for differences in selectivity 
between zones (Model B). The models that presumed the same trend of fishing mortality in 
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the subareas had less support from the data, and those that presumed constant measurement 
error between zones even less. Although Model C can be regarded as a subset of Model B, its 
estimate of fishing mortality was markedly different (Figure 4). This was especially the case 
for RV “Tridens II” data, owing partly to the dependence of the fishing mortality estimate on 
dispersal rate. 

As dispersal rate and selectivity of fishing mortality were both age-related, their estimates 
are not independent. High estimates of the rate of dispersal can in principle be cancelled out 
by adjusting the age-specific component of fishing mortality; downwards in the southeast and 
upwards in the western and central North Sea. Integrated models that allow for different 
selectivity between zones indeed showed significant correlations between dispersal rate and 
selectivity estimates: negative for RV “Isis” data and positive for RV “Tridens II” data (Table 
3). By presuming constant selectivity between zones, the scope for trade-off between 
dispersal rate and selectivity was restricted: in model C, these parameter estimates were 
positively correlated over the age range 3–7, but the correlations were weak and meaningful 
at age classes 4 and 5 only. This suggests that estimates of fishing mortality in Model C were 
largely independent of dispersion to the western and central North Sea, whereas those in 
Model B might have been biased. Independent parameter estimation was impeded if it was 
presumed that the trend of fishing mortality in the subareas was also the same (Model F). 

In the separate model (Model A), the measurement error was estimated at 0.48 (s.d. 0.08) 
for RV “Isis” data and at 0.47 (0.09) for RV “Tridens II” data. In the integrated models that 
presumed constant measurement errors between zones, the overall measurement error was 
consistently estimated at 0.38 (0.04). The integrated models that presumed constant 
measurement errors between zones yielded not only a superior model fit over that of the 
separate model, but also a significant reduction in the overall measurement error estimate. In 
the general integrated model (Model B), however, the measurement error as estimated for the 
RV “Isis” data increased to 0.54 (0.08), whereas that for the RV “Tridens II” data was 
reduced to 0.19 (0.05). Given the significant decrease in model fit by presuming constant 
measurement error between zones, it seems appropriate to conclude that RV “Isis” data were 
characterized by greater measurement error than RV “Tridens II” data. 

The best-fitting model (Model C) presumed constant selectivity between zones but 
allowed for differences in measurement error and separate trends in fishing mortality between 
subareas (Figure 5). The mean annual rate of fishing mortality over the age range 2–6 
fluctuated around 0.9, and was similar in the southeast and in the western and central North 
Sea. Closer inspection of results, however, suggests that fishing mortality in the southeast had 
declined up to 2001 (possibly followed by an increase to previous levels), whereas that in the 
western and central North Sea experienced a slight increase up to 2001 (possibly followed by 
a decline). The selectivity estimates clearly show that fishing mortality was directed at 
younger age classes. Estimates of dispersal rate increased with age, but seemed to reach a 
plateau around age 5. The rate of dispersion may even have decreased at older age, but 
estimates were imprecise. Results were not substantially influenced by the choice of priors 
(Figure 5). 

The estimates of Model C appeared quite robust to small deviations in assumed values of 
natural mortality and catchability, as verified by sensitivity analyses. The estimates of 
dispersal rate were not affected by changes in natural mortality up to a factor of 5, whereas 
the estimates of fishing mortality responded as would be expected: lowering or raising M 
respectively resulted in slightly higher of lower estimates for fishing mortality (Figure 6). 
Assuming that catchability decreased with age did not influence the estimates of fishing 
mortality, but gave slightly lower estimates of dispersal rate above age 2. Conversely, 
assuming that catchability increased with age gave slightly lower estimates of dispersal rate 
below age 5, as well as a somewhat higher mean fishing mortality over the age range 2–6 
(Figure 6). 

SSB estimated using the separate Model A showed a clearly increasing trend over the 
period 1996–2005 for area 1 (RV "Tridens II"), and interannual variations but no trend for 
area 2 (RV "Isis"). In contrast, the estimates of numbers-at-age obtained by the best-fitting 
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model C indicated that SSB increased over the period 1996–2005, in both the southeast and 
the western/central North Sea (Figure 7).  

 
Discussion 
We have here presented fisheries-independent estimates of trends in North Sea plaice 
abundance and fishing mortality. Our estimates are based on survey data and have been 
obtained by Bayesian analysis, which allows for estimation of uncertainty in the model 
parameters and of measurement error outside the sampling variance of the global abundance 
indices used. We considered integrating two surveys that cover distinct parts of the 
distribution area of North Sea plaice and provide a novel estimate of dispersal rate. An 
integrated model partially solved the disparity that arises from separate analyses of the survey 
datasets. Whereas separate analyses yielded different estimates of fishing mortality (over time 
and across ages) and divergent trends in SSB between the two subareas, integrated model 
analyses favoured constant selectivity of fishing mortality between zones and demonstrated 
compatible trends in SSB over the period 1996–2005. The different estimates of measurement 
error for the two survey datasets were, however, not resolved in the integrated model: RV 
“Isis” data were characterized by greater measurement error than RV “Tridens II” data. 

The greater measurement error in the southeast could reflect reduced accuracy in the 
estimate of the true state of the stock for a number of reasons. A change in the spatial 
distribution of younger age classes has been reported, which may have affected the discarding 
rates of undersized plaice (van Keeken et al., 2007). Also, interference interactions between 
the research vessel and the commercial fleet may be involved. Interference interactions 
among fishing vessels may reduce the catchability of survey gear in areas with high 
commercial fishing effort (Gillis and Peterman, 1998; Poos and Rijnsdorp, 2007). As 
commercial fishing effort is much higher in the survey area of “RV Isis” than in that of “RV 
Tridens II” (Jennings et al., 1999), this effect may have contributed to the difference in 
measurement error between the two survey areas. Finally, the greater measurement error in 
the subarea inhabited mainly by younger age classes could also reflect a greater stochasticity 
in the population dynamics of immature fish, given that fluctuations in natural mortality are 
more likely to affect younger age classes. 

Here we only considered deterministic population dynamics. Unbiased estimation of 
relevant parameters using a stochastic population dynamics model necessitates formulation of 
an appropriate error structure, and would present a major challenge and a huge improvement. 
The model could also be improved by explicit reference to biologically or spatially defined 
substocks. The current model is based on the notion that observations from different surveys 
are broadly related to different geographic zones, but in some ICES rectangles the two 
surveys do overlap. Hence, some observations from RV “Tridens II” may have been derived 
from the same substock as observations from RV “Isis”. Our assumption that dispersion only 
occurs from the area covered by RV “Isis” to the area covered by RV “Tridens II” is also a 
simplification. An explicit substock population dynamics model could perhaps solve these 
inconsistencies, because the state-space modelling framework is readily suited to facilitate the 
formal distinction between substocks in the population dynamics (the process equation), and 
to surveys with differential sampling of these underlying substocks (the measurement 
equation). Other potential refinements to the current approach include the specification of 
covariance structure in the multivariate normal likelihood for measurement error and for 
sampling variance. The latter could again be estimated outside the model, e.g. by close 
examination of errors made in otolith readings. Finally, the model could be improved by 
exploring parametric relationships between selectivity and age, and probably also between 
catchability and age. Specification of the functional form may be informed by exploratory 
analyses, but priors for the related parameters should be based on external information or 
personal belief. 

Our estimates of fishing mortality were substantially higher than those reported in ICES 
assessments (Figure 5). Four of nine estimates of ICES fell below the 95% credible intervals 
of our estimates in the southeastern North Sea, and five of nine fell below those in the western 
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and central North Sea (results not shown). Assessment with a Bayesian catch-at-age model 
that uses the same input as the ICES assessment yields approximately similar results as the 
ICES assessment (Figure 8), so the higher estimates of fishing mortality are not necessarily 
brought about by taking a Bayesian perspective. The difference likely originates from the use 
of survey data only. In comparison with the ICES assessment, SURBA yielded markedly 
higher estimates of fishing mortality when RV “Isis” data were considered, and markedly 
lower estimates of fishing mortality when RV “Tridens II” data were considered (Cook, 1997; 
Needle, 2003). These findings have been confirmed with a Bayesian survey-data only model, 
using the same input and parameterization as SURBA. The question remains whether fishing 
mortality estimated from RV “Isis” data was overestimated, or whether that estimated solely 
from RV “Tridens II” data was underestimated. Our integrated model strongly suggests the 
latter. A single estimate for the North Sea plaice stock can be obtained by presuming a similar 
trend in fishing mortality as well as constant selectivity between subareas. The resulting curve 
clearly lies above that based on ICES estimates – 2003 being the exception (Figure 8). 

North Sea plaice is managed as a single stock, so a fisheries-independent estimate of SSB 
would greatly facilitate stock assessment. The difficulty with using survey-based assessments 
to provide estimates of absolute population size is not resolved in our approach, nor can we 
present a single estimate of SSB. As the analytical model for research vessel data was 
primarily developed to examine trends in fish stocks (Cook, 1997), the finding that both 
subareas display compatible trends of increasing biomass when using an integrated catch-at-
age model is heartening. Ways of combining multiple surveys within a formal framework to 
obtain a single absolute estimate of SSB are worth investigating, but the real challenge is to 
seek to develop an integrated management system that can respond to various biological 
indicators simultaneously. Our approach provides a vital addendum to the suite of indicators 
presently available to meet this purpose.  

The integrated model incorporates an age-dependent dispersion parameter which 
significantly enhances model fit. Also, this model conceptually is the most credible because it 
reflects the underlying spatial dynamics of the stock. Our estimates suggest that, over the 
period 1996–2005, the annual proportion of fish that had moved in a northwesterly direction 
increased from about 10% at age 2 to 33% at age 5 and older. This pattern corresponds to the 
ontogenetic changes in distribution inferred from commercial catch rates and survey data 
(Rijnsdorp and van Beek, 1991). The changes in distribution with age are attributable to the 
gradual dispersion of maturing fish from the shallow coastal nursery grounds to deeper water 
offshore (Zijlstra, 1972; van Beek et al., 1989). The age at which the estimated dispersion 
parameter levels off corresponds to that at which females become mature (Grift et al., 2003). 

Estimates of dispersal rate from abundance indices are sensitive to the timing of surveys, 
given the seasonal migrations of adult plaice between the spawning areas in the southern 
North Sea in winter and the feeding areas in the central North Sea in summer (Rijnsdorp and 
Pastoors, 1995; Hunter et al., 2003, 2004; Bolle et al., 2005). The estimates presented here 
may be somewhat conservative because they have been derived from surveys that are carried 
out during late summer. On the other hand, dispersion from the southeast to the western and 
central North Sea may have been overestimated, because we did not account for migration to 
the central North Sea of juvenile fish from northern nursery grounds along the Danish coast, 
which are not included in our surveys (Rijnsdorp and Pastoors, 1995). Clearly, there is a need 
for auxiliary data or an alternative parameterization if we wish to obtain unbiased information 
on the dispersion process. 

Our analyses assumed constant M and constant q, over time and across ages, as well as 
between surveys. Although sensitivity analyses suggest that results are robust to small 
deviations from these assumptions, our estimates should still be interpreted with caution. In 
the absence of auxiliary information (of which there is generally none), M is commonly 
assumed constant, but this is not likely to reflect the actual situation. Our assumptions 
regarding M are the same as made in ICES assessments on the North Sea plaice stock (ICES, 
2008). Nonetheless, about half of the fishing mortality rates reported by ICES fell below the 
95% credible intervals of our estimates. Moreover, our estimates suggested that values of F in 
the southeast have increased since 2001, whereas ICES reports show a stable (or possibly 
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decreasing) F over recent years. The discrepancy in estimated trends may disappear in future 
analyses, given the sensitivity of mortality estimates towards the end of the observation period 
in catch-at-age models in general. The systematic difference in the level of F is more 
puzzling, especially because earlier analyses of research vessel data have also reported much 
higher rates of mortality than those reported in ICES assessments (Cook, 1997; Needle, 
2003). 

There are a several reasons why estimates of F obtained from commercial catches are 
lower than those that we report. First, highgrading is likely in flatfish fisheries (Rijnsdorp et 
al., 2007). As a result, the perception of age structure in the population becomes distorted; 
estimates of recruitment may be too low and survival to older age classes too high. 
Alternatively, our perception of survival may have been distorted by the fact that catchability-
at-age is not specified adequately. Although there is some evidence of constant catchability 
across ages regarding plaice in the beam trawl survey (ICES, 2003), adequate specification of 
catchability remains elusive. Differences in catchability between the two surveys may also 
play a role, because there are subtle differences in gear. The RV “Tridens II” beam trawl is 
equipped with a flip-up rope to allow sampling on rough ground. Comparative fishing trials of 
both survey gears on board RV “Isis” indicated that the catchability of the flip-up beam trawl 
is slightly lower, of the order of 10% (Groeneveld and Rijnsdorp, 1990). Including this 
possible difference in catchability of the survey gears into our model would give more weight 
to numbers observed in the western and central North Sea than in the southeast. As these 
numbers are also related to the older age classes, F may have been overestimated and 
dispersion underestimated owing to the assumption of constant catchability between surveys. 
However, the impact would likely be small given the slight difference in catchability reported. 

All integrated models estimate decreased selectivity of fishing mortality at older age. This 
is consistent with the targeting of the beam trawl fleet on sole in the southern North Sea 
(Quirijns et al., 2008), where younger age classes of plaice dominate. Older age classes of 
plaice are mainly exposed to fishing during the spawning season in the first quarter, when 
they aggregate on the spawning grounds in the southeastern North Sea (Rijnsdorp and 
Pastoors, 1995; Rijnsdorp et al., 2006). During the rest of the year, older plaice escape the 
heavy fishing as they disperse over the feeding grounds in the central North Sea, which is 
fished less intensively. Another factor that may affect the availability of fish to the fishery is 
the migration patterns of individual fish. Records of the seasonal migration tracks of 
individual plaice revealed that fish tend to repeat their seasonal migration routes (Hunter et 
al., 2003, 2004). Individual fish that happen to visit trawlable habitats during their seasonal 
migration cycle will be exposed to greater levels of fishing mortality. Hence, the proportion of 
fish in the population that inhabit trawlable habitats will decrease with age. The extent to 
which this process may affect the exploitation pattern is uncertain, but it is likely that adult 
plaice are less accessible to the fishery than younger age classes. 

Finally, we made minimal use of the possibility of constructing informative priors. This 
makes our results all the more comparable with previous analyses, but neglects a main benefit 
of Bayesian statistics. Use of external data to formulate a functional stochastic process for the 
development of F over time would lead naturally to construction of informative priors. The 
same applies to selectivity and catchability, but there is very little information on those 
quantities. Moreover, as our results show, the estimates of these parameters are correlated. 
Even so, we demonstrate the usefulness of parameter estimation within a Bayesian framework 
as a flexible tool for extracting integrated signals from multiple surveys. 
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Figure legends 
Figure 1. Spatial distribution of sampling stations of the two Dutch research vessels RV 
“Isis” (open circles) and RV “Tridens II” (dots) in the beam trawl survey (BTS) of August 
and September 2004. 
Figure 2. (a, b) Temporal trends, and (c, d) coefficients of variation (CVs) of the age-
disaggregated abundance indices according to the two BTS research vessels. The different 
numbers for each year denote the age class concerned. The different points for each age 
indicate the CVs of the summary index in different years. Smoothed lines were obtained by a 
SAS Loess procedure.  
Figure 3. (a, b) Estimates of the average fishing mortality over ages 2–6, and (c, d) the 
selectivity of fishing mortality for the two BTS research vessels according to separate 
analyses of the survey datasets (Model A in Table 2). Thick black lines denote median 
estimates, and thin black lines the 95% credible intervals.  
Figure 4. (a, b) Estimates of the average fishing mortality over the ages 2–6, and (c, d) the 
selectivity of fishing mortality for the two BTS research vessels according to the three best-
fitting integrated models: Model B (dashed lines), Model C (solid lines), and Model D 
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(dashed-dotted lines). Estimates from the separate Model A are given for comparison (dotted 
lines). See Table 2 for model specification.  
Figure 5. Estimates of the average fishing mortality over ages 2–6 in (a) the RV “Isis” data 
and (b)in the RV “Tridens II” data, and estimates of (c) dispersal rate and (d) selectivity of 
fishing mortality according to the best-fitting integrated model (Model C in Table 2). Thick 
black lines denote median estimates, and thin black lines 95% credible intervals of the 
simulated posterior distributions when using default priors (see Table 1). Results with 
alternative priors are denoted by dashed lines.  
Figure 6. Estimates of the average fishing mortality over ages 2–6 in (a) the RV “Isis” data 
and (b) in the RV “Tridens II” data, and estimates of (c) dispersal rate and (d) selectivity of 
fishing mortality according to the best-fitting integrated model with base-case assumptions for 
natural mortality and catchability (Model C in Table 2, thick solid lines) and  various 
deviations: M = 0.05 (short-dashed lines), M = 0.20 (dashed-dotted lines), M = 0.50 (dotted 
lines), qa = 0.95qa–1 (thin solid lines), and qa = (0.95)–1qa–1 (long-dashed lines). Figure 7. 
Estimates of trends in spawning-stock biomass (SSB) from the two BTS research vessels 
according to (a, b) separate analyses of the survey datasets (Model A in Table 2), and (c, d) to 
the integrated model with constant selectivity between zones (Model C). Estimates are given 
as medians (thick lines) along with 95% credible intervals (thin lines) from the posterior 
distributions; uncertainty relates to the estimated numbers-at-age only. SSB calculated from 
observed numbers-at-age is denoted by circles.  
Figure 8. Comparison of the best-fitting integrated model (Model C in Table 2) to various 
other assessment models for North Sea plaice. Estimates of the average fishing mortality (top 
row) and selectivity of fishing mortality (bottom row) over ages 2–6 in (a, c) the RV “Isis” 
data,  and (b, d) in the RV “Tridens II” data of the best-fitting model (thick solid lines) are 
compared with the ICES assessment (thin solid lines), a Bayesian catch-at-age model that 
uses the same input as the ICES assessment (short-dashed lines), a Bayesian survey data-only 
model that uses the same parameterization as SURBA (dotted lines), and an integrated model 
that presumes the same fishing mortality between subareas (Model F, dashed-dotted lines).  
 
Running headings 
J. A. Bogaards et al. 
Bayesian survey-based assessment of North Sea plaice 
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Table 1. Estimable parameters and prior distributions used in Bayesian analysis of global 
abundance indices of the two Dutch research vessels in the beam trawl survey (BTS). 
 
Parameter Description Default prior Alternative prior 

)(
,1
s
yN  Survey-specific numbers of recent 

recruits in the month of the survey 
Uniform[0,max$] None considered 

)(
1,
s

aN  Survey-specific numbers-at-age in the 
first year of the data 

Uniform[0,max$] None considered 

)(s
as  Survey-specific selectivity of fishing 

mortality 
Uniform[0,3] #LN(log 0.5, 1) 

)(s
yF  Survey-specific temporal component 

of fishing mortality 
Uniform[0,3] #LN(log 0.5, 1) 

aD  Dispersal rate from RV “Isis” area to 
RV “Tridens II” area 

Uniform[0,3] #LN(log 0.5, 1) 

)(2 s
uσ  Survey-specific variance of 

measurement error 
Uniform[0,1] *IG(1.5, 20) 

$ max is ten times maximum observed 
# Lognormal distribution (log mean, precision) 
* Inverse-gamma distribution (shape, scale) 
 
 
Table 2. Characteristics and model performance for nine alternative models for the North Sea 
plaice stock using abundance indices from two BTS research vessels covering different 
subareas of the North Sea. The models differ in the formulation of dispersal rate (Da), 
selectivity of fishing mortality (sa), trend in fishing mortality (Fy), and measurement error (σu) 
for the two zones s = {1,2} . Parameters were estimated with two sets of priors (see Table 1). 
 
Model Parameters Priors$ Rmax

# Deviance* pD§ DIC¶
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Alternative 1.015 –34.7 (18.1) 125.8 91.1 
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Default 1.009 –35.4 (18.9) 131.4 96.0 E 
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=

≠

>

 
Alternative 1.010 –33.0 (19.0) 132.8 99.8 

Default 1.011 –35.7 (17.9) 135.1 99.4 I 

)2(2)1(2

)2()1(

)2()1(

0

uu

yy

aa

FF

ss
D

σσ =

=

=

>

 Alternative 1.008 –33.4 (18.5) 132.7 99.3 

$ Prior distributions given in Table 1 
# Maximum scale reduction factor 
* Mean value (standard deviation) 
§ Effective number of parameters 

¶ Deviance information criterion 
 
 
Table 3. Correlations between estimates of the age-specific component of fishing mortality sa 
and dispersal rate Da in the various integrated models. For model description see Table 2. 
 
Model Vessel Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 

“Isis” –0.39 –0.56 –0.56 –0.72 –0.64 –0.54 –0.45 B 
“Tridens II” 0.41 0.80 0.77 0.87 0.55 0.46 0.22 

C –0.24 0.13 0.44 0.44 0.20 0.05 –0.10 
“Isis” –0.48 –0.44 –0.62 –0.75 –0.54 –0.51 –0.41 D 
“Tridens II” 0.37 0.75 0.84 0.85 0.61 0.47 0.22 
“Isis” –0.31 –0.60 –0.63 –0.74 –0.68 –0.64 –0.54 E 
“Tridens II” 0.41 0.71 0.72 0.73 0.31 0.30 0.06 

F –0.31 0.23 0.47 0.54 0.26 0.10 –0.08 
G –0.18 –0.09 –0.04 –0.19 –0.34 –0.27 –0.32 

“Isis” –0.31 –0.56 –0.65 –0.78 –0.64 –0.65 –0.50 H 
“Tridens II” 0.43 0.66 0.65 0.76 0.29 0.33 0.13 

I –0.27 –0.11 –0.07 –0.16 –0.26 –0.25 –0.34 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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