IRISH FISHERIES INVESTIGATIONS

SERIES B (Marine)

No. 25 (1982)

An Roinn Iascaigh agus Foraoiseachta
(Department of Fisheries and Forestry)

DUBLIN:
PUBLISHED BY THE STATIONERY OFFICE

TO BE PURCHASED FROM THE
GOVERNMENT PUBLICATIONS SALE OFFICE, G.P.O. ARCADE,
DUBLIN.

IRISH FISHERIES INVESTIGATIONS

SERIES B (Marine)

No. 25
(1982)

THE ESCALLOP, PECTEN MAXIMUS (L.), IN KILLARY HARBOUR

by

DAN MINCHIN and NIGEL F. MATHERS.
The escallop, *Pecten maximus* (L.), in Killary Harbour

by

DAN MINCHIN¹ and NIGEL F. MATHERS²

1 Department of Fisheries and Forestry
Fisheries Research Centre
Abbotstown, Castleknock,
Co. Dublin.

2 Department of Biological Sciences
Heriot-Watt University
Chambers Street
Edinburgh EH1 1HX.

Received 1st June, 1981.

ABSTRACT

Escallops (843) collected by SCUBA diving ranged from one year to an estimated seventeen years old and varied in shell height from 17mm to 164mm. They were predominantly found on the slopes on either side of the Harbour at depths between 6m and 35m; very few specimens were observed on the soft mud in the centre of the Harbour. The density of escallops increased towards the mouth of the Harbour.

The greatest numbers of specimens of less than 50mm were observed at the mouth of Killary. Variability in age frequency distributions along either side of the harbour could be explained by differences in settlement intensity from year to year. Settlement appeared to be more successful on the southern side than on the northern side. It also appeared that local dispersion from settlement areas occurred rather than active migration. Escallops four years old or less swam regularly while swimming was less frequently seen in individuals exceeding five years of age.

It was concluded that Killary Harbour was unsuitable for the collection of spat but may be a suitable area for escallop cultivation.

INTRODUCTION

The escallop, *Pecten maximus* (L.) is frequently encountered along the west coast of Ireland in bays and inlets (Gibson, 1956, 1959; Lee, 1973). Killary Harbour is a 15.7km long inlet on this coast where escallops are known to occur and have occasionally been fished by commercial dredge.

Many escallop surveys have involved the use of dredges to sample a population. Baird and Gibson (1956), however, demonstrated that the use of a dredge was inefficient for sampling an escallop population representatively, since a greater proportion of younger escallops could be taken by diving than by using a commercial dredge. A number of underwater observations have since been made by diving (Baird, 1966; Hartnoll, 1967; Mathers, 1976 and Chapman, Mason and Kinnear, 1977).

Underwater television and submersibles (Cameron, 1955; Caddy, 1970) are valuable for surveying deep water populations of escallops, where diving time is so limited as to be valueless, or where diving is not possible. In shallow water, however, diving enables the collection of material and permits a wide angle of vision; also the detection of very young escallops and studies of behaviour are often possible only by diving.

This paper describes a population of escallops based on collections and observations made by diving between 28 May and 20 August, 1974 and on 22 March, 1978.
Diving stations were selected throughout most of the length of Killary Harbour and outside it as far as Inishdegilmore Island 2.75km west north west of the Harbour mouth (Figure 1). Many of the stations were located close to land promontories or bays as this facilitated the recording of the precise location on a chart. Standard SCUBA equipment was used and all measurements of depth were made using a boudouard helium depth gauge and later adjusted, to the nearest metre, to mean low water level. Most of the observations were made in depths less than 30m, although dives as deep as 42m were made, and as a result diving time varied from station to station. Transsects at each station were made at right angles to the shoreline.

![Diving Stations](image)

Figure 1. Diving stations about Killary Harbour.

At the point where the greatest concentrations of escallops occurred on each transect, an estimate of the density was made against a hand held meter rule (numbers/m²) to give the figure for the “maximum density” encountered. Observations commenced at the deeper end of each transect and then proceeded inshore along the sea floor to the shallower end. Where specimens were plentiful they were collected from within a 2m wide transect; elsewhere a wider area was searched to provide an adequate sample. At stations where escallops were sparsely distributed searching was continued at the same depth as the point of maximum density. This extended searching was an adequate sample. At stations where they were encountered. Observations commenced at the deeper end of each transect and

RESULTS

The underwater visibility at Inishdegilmore and Inishbarna was approximately 6m. It was less within the Harbour (2m) but adequate to observe escallops. Diving stations are shown in Figure 1.

Distribution

The escallops were unevenly distributed along both the north and south slopes for most of the length of the Harbour and were most common adjacent to rocky headlands and on the south side of the Harbour. The distribution was usually limited to substrates of gravel/shell, shell sand, muddy sand and the firmer mud with some shell on slopes. Off Derrynasliggan (S10) escallops appeared to be concentrated within a transition zone of shell and mud which lay between mud and a mixture of pebbles with shell debris. Escallops were seldom found at the foot of the slopes where there is mud. They were not observed on the gently undulating soft mud which extends centrally up the Harbour (C2 to C9). A similar area also devoid of escallops was found between Inishbarna and Inishdegilmore (C1).

At all stations where juveniles (less than 50mm height) were found adults were present, juveniles never being observed on their own. Adults were recorded in the absence of juveniles at all stations except S1, S2, S3, S8 and N1, N2, N3. The juveniles were more common in water of less than ca 17m especially when close to the base of rock outcrops. Adults were also found near the rock outcrops but their range extended down slopes into deeper water where they were generally more numerous.

Density

Population density varied throughout the Harbour (Table 1). It was often greatest close to rock outcrops. Local concentrations could be found in gullies on patches of muddy sand or mud between rock. Areas of high density were near the mouth of the Harbour at S1 to S4 and at S7 and S8 and also at N4. The greatest density was found at S2, and this sample consisted predominantly of juveniles. The greatest numbers were found within 8m of the mouth of the Harbour. The escallops occurred over a greater depth range within this region of the Harbour (2m), and also at N4. The juveniles were more common in water of less than ca 17m especially when close to the base of rock outcrops. Adults were also found near the rock outcrops but their range extended down slopes into deeper water where they were generally more numerous.

Age distribution

Figure 2 shows the year class structure determined for each station from samples collected from May to June 1974. Individuals with four or fewer rings were plentiful near the Harbour mouth as far in as S3 (although rings of escallops at S7 were not counted, no ‘0’ or ‘1’ ring escallops were found). They were scarce east of S8 and absent east of N3. Escallops found had four or fewer rings and were the most common at S6 and S8 and specimens with eleven rings were dominant at S10 and N3. During March 1978, only S3 was revisited and no escallops with fewer than four rings (1973 settlement) were found.

No escallop spat (here, ‘0’ ring escallops) were seen during 1974. Because of the presence of large numbers of individuals of the 1973 year class with one ring at S2 (up to eight per square metre), further studies at this station from May to October 1974 were made. The cliff face was examined for the bryally attached stage of the escallop but the only five pectinids found were Chlamys distorta (da Costa) and C. varia (L.). At the cliff base some damaged escallop shells (8mm to 11mm height) were found on muddy sand with broken shell.

Behaviour

Escallops were usually seen reccessed into the substrate with sediment covering the left valve; if the valves were closed swimming could not be induced, even with tactile stimulation. Young escallops would usually swim when approached within a distance of approximately two metres by a diver. This distance could be reduced to a few centimetres if approached without catalysis and with minimal fin movement. Escallops normally swim away from the diver. When one of a number of escallops began to swim others would do so, resulting in some dispersion. Some escallops were seen to swim two or three times after brief intervals of rest. The distance covered by most individuals during the first period of swimming was normally the greatest. They seldom swim more than an estimated three metres.
Before swimming the valves "gaped" slowly and the mantle curtain distended. After two or three rapid contractions of the adductor muscle, which cleared the upper valve surface of sediment, adults swim from a recessed position into the water column with their dorsoventral axis at an angle of approximately 30° to 40° to the horizontal. This angle usually decreased with continued contractions above the sea floor. The maximum distance above the substrate, estimated with the use of a metre rule, did not exceed 80cm to 90cm. When swimming terminated the escallops descended to the sea floor, coming to rest on the right valve. Most escallops with four or fewer rings were seen to swim actively (Table 2). Those with one and two rings swim with more rapid adductor contractions and often at a greater distance above the sea floor.

Escallops within the Harbour exceeding 125mm in shell height seldom swim but some did so with comparatively slow adductor contractions and 'tipped' along the sea floor on their hinge line. When on mud they often disturbed the bottom to produce a muddy suspension so that after swimming they were not always visible. Large escallops with five or more rings were seldom seen to swim and were normally well recessed into the substrate. Those collected from Inishdegilmore (W) less than 125mm height, and in Table 2). Those with one and two rings swim with more rapid adductor contractions and often at a greater distance above the sea floor.

Escallops found deepest on the slopes on the edge of the soft mud had more epifauna on the left valve than those in shallow water. Those heavily fouled with sponges, tunicates and Alcyonium, were never observed to swim. The few observed reared in soft mud often had their right valves highly curved towards the ventral margin.

DISCUSSION

Escallops were located along most of the length of Killary Harbour, contrasting with the observations of Lee (1973) who found none. It would however appear that he sampled, using a dredge, the soft mud along the centre of the harbour which supports a facies of the *Amphiura chiaje* (Forbes) community. In the present study escallops were observed on either side of Inishbarna to S7 on the north slope and to S12 on the south slope, a maximum distance of approximately 9 kilometres. A similar type of distribution occurs in some of the fjords and bays of Norway (K. F. Wiborg—pers. comm.). Escallops were also found outside the Harbour on the southern side of Inishdegilmore.

The population density was generally greater near the mouth than further into the Harbour. The very low figures at S5 and S6 could be explained by the closeness of these stations to Rossroe Pier, an area known to be exploited.

In many of the other areas examined within the Harbour it was considered that escallops could not be easily exploited by dredge because of the nature of the slope of the seafloor and the presence of rock outcrops. Escallop density appeared to increase close to the small land promontories within the harbour where there was stronger current movement. On the slopes of the harbour escallops were absent where large local concentrations of either *Ophiocamerina nigra* (Abildgaard) extending from shallow and into deeper water occurred. Densities were highest close to rocks and lowest on the soft mud in the centre of the harbour.

In the absence of known fishing by dredge in most of these areas, the distribution suggests that the presence of rock or the coarser substrate often found adjacent to the rock has some influence on the local abundance of escallops. This may be either because escallops experience less "need" to swim away from such a substrate once having arrived or be due to the proximity to a region where settlement is likely to take place. The soft mud along the centre of the Harbour may be unsuitable for escallops although they have been seen on similar substrates in Berehaven Sound and Maloney Bay (Minchin, unpublished). Their densities were also low, as in Killary Harbour, and all were large escallops.

There was an increase in the mean age of escallops from S2 to S10 (Figure 2). This type of distribution could arise as a result of escallop movement from an area of settlement near the harbour entrance or from annual variation between years of settlement within the harbour. It could also be a result of predation which, although not investigated, was not considered to vary greatly over the length of the harbour, a contention supported by the fact that old escallops (having more than ten rings) were noted at most stations.

Movements have been noted in various pectinid species. Should swimming occur during periods of strong tidal flow, as has been found in *Argopecten irradians* Lamarck (Moore and Marshall, 1967), displacement from the place of settlement is possible. Should swimming take place predominantly during tidal inflow, it could result in the eastward dispersion of escallops in Killary Harbour. This
could result in the age distribution pattern that exists at S1 to S8 (Figure 2), particularly since escallops with four and less rings were found to be most active (Table 2). Although there is a suggestion that escallops may move into the harbour, it does not fully explain the nature of the distribution pattern obtained; because the density of escallops along the southern slope is highly variable with few escallops present off Rosroe (S4 to S6) and areas of abundance at S2, S3 and S7. There are also areas devoid of escallops where there are communities of brittlestars and so a 'migrant' into the harbour would appear to be unlikely. Local movements are, however, thought to occur, and dispersion of escallops into deeper water may take place: most single ringed escallops were taken in shallow water. This could result from settlement having occurred predominantly in shallow water with dispersion into deeper water by swimming as the escallops become older.

The frequently reported scarcity of juvenile P. maximus from adult beds has been well documented by Tang (1941), Baird (1952), Baird and Gibson (1956), Mason (1957), Eggleston (1962), and Mathers (1976); some have suggested that this is due either to inadequate sampling technique or to poor representation of juveniles in some places. Gibson's (1953) tagging studies demonstrated little movement and those few that were thought to have moved were less than 100mm in shell height. Baird and Gibson also cite a tagging experiment by Mason which indicated no escallop movement. Feare (1966) on the other hand records distances travelled of up to 4km in seven months; however, no mention of the size or ring groups of these escallops was made. The absence of juveniles on adult beds has been noted in other members of the genus; in Pecten ziczac L. (T. Wafter—pars. comm.), also in Pecten novazzelandiae Reeve (Tunbridge, 1968) and P. (Notovale) meridionalis (Tate—Fairbridge, 1953). Tunbridge suggested that this may be due to poor recruitment at the time of his survey.

The distribution patterns obtained in this study may be due as well in part to uneven recruitment between years. Recruitment of escallops is known to be variable (Baird, 1969; Rolfe, 1969 and J.C. Dow and D. Basset—pars. comm.) possibly partly because they have a relatively long planktonic period, and during this time are subjected to the combined effects of variable meteorological and hydrographic conditions. Laboratory studies of larvae to the time of settlement indicate that they may exist in the plankton for up to 30 days depending on sea water temperature, (Gruffydd and Beaumont, 1972; Comely, 1972). Should settlement occur at different intensities in different places within the Harbour each year, it would be possible to obtain the distribution observed. It appears that there was a good survival of escallops which settled within the harbour during 1963 and 1970 and near the harbour entrance in 1969, 1972 and possibly 1973 (Figure 3). Should mortalities of settled escallops be relatively constant, then a predominant age class may reflect a year of successful settlement.

How the intensity of settlement could vary about the harbour is not fully understood, but could be explained by the larvae becoming concentrated into certain parts of the harbour by hydrographic and meteorological conditions before the time of settlement. The larvae could behave in such a way as to occupy a certain position in the water column which may enhance such an effect. The intensity and time of spawning of adult escallops may also determine the nature of this distribution. In the present study escallops with one ring were encountered at S8, S10 and N3, which suggests that conditions were suitable for settlement and therefore the larvae were not concentrated into certain parts of the harbour. In 1973 settlement conditions appeared to be more favourable about Inishbarna as large numbers of one ring escallops were encountered in this region. The mud along the centre of the Harbour is probably unsuitable for settlement and the substrates present on the slopes within the harbour have varying numbers of escallops. The substrates present on the slopes within the harbour have varying numbers of escallops present. The mud along the centre of the Harbour is probably unsuitable for settlement.

The observed ages of the settlement in the Harbour each year, 1963 and 1970, could explain the presence of smaller numbers of adults there and why settlement about Inishbarna has been more consistent and successful.

Gruffydd (1973) in his studies on escallops from unexploited areas in the north Irish Sea found that the age structure varied at different stations, suggesting an effect of uneven recruitment between years. However the combination of all of his samples produced a curve that suggested that recruitment throughout a wide area was constant. Thus variation in the place of settlement could produce different age frequency patterns (Figure 2) and such patterns may also be further complicated by variations in spawning intensity from year to year.

The possible variation of settlement intensity at each locality for each year would indicate that Killyar Harbour would be unsuitable for collecting escallop spat onto collectors.

The substrates present on the slopes within the Harbour have varying numbers of escallops present. The mud along the centre of the Harbour is probably unsuitable for settlement. The absence of escallops from this region may be due to the principal settlement regions being confined to the edges of the Harbour, and also it may be more suitable for adults. The limiting factor to the presence of large numbers of escallops being present is possibly the variability of settlement between years and areas and greater densities could be sustained if settlements were more constant. It is likely that the larval holding, or 'nursery', ground, the surrounding area, is unexploited and maintenance of a suitable settling area in that region would be a logical solution to the problem.

Areas which may be suitable are S1 to S2, S4 to S5 and small regions in shallow water between S6 and S8. The flat deltae alluvial fan on the Derrynasliggan river which extends into the sea is a shallow area which could also be examined.

The deep relatively sheltered harbour could provide suitable areas for the suspended cultivation of escallops but the economics of such a plan need to be examined in the light of some experimental trials.

ACKNOWLEDGEMENTS

Most of this work was conducted while at the Shellfish Research Laboratory of University College, Galway from May to October 1974. We would like to thank Trevor Ryder who skippered the 'Una' during the study in May. Drs. Brendan Keegan and Christopher Moriarty read the manuscript. We would like to thank Barbara Minchin for drafting the figures.

REFERENCES

D. Minchin and N. F. Mathers: The scallop Pecten maximus (L.) in Killary Harbour.

TABLE 1. The minimum and maximum depths (m) below low water where escallops were observed, population density (numbers/m²), and sampling data.

<table>
<thead>
<tr>
<th>South Slope Stations</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
<th>S11</th>
<th>S12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum depth</td>
<td>12</td>
<td>15</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>19</td>
<td>21</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>22</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Maximum density</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td><1</td>
<td><1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Number of P. maximus <50mm</td>
<td>11</td>
<td>30</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total sample size</td>
<td>71</td>
<td>68</td>
<td>112</td>
<td>15</td>
<td>6</td>
<td>45</td>
<td>161</td>
<td>53</td>
<td>25</td>
<td>35</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Number of escallops per 60 minutes diving</td>
<td>178</td>
<td>208</td>
<td>164</td>
<td>45</td>
<td>9</td>
<td>93</td>
<td>261</td>
<td>155</td>
<td>32</td>
<td>50</td>
<td>16</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>North Slope Stations</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
<th>N5</th>
<th>N6</th>
<th>N7</th>
<th>W (Inishdagilmore)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum depth</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Maximum density</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>3</td>
<td><1</td>
<td>1</td>
<td><1</td>
<td>4</td>
</tr>
<tr>
<td>Number of P. maximus <50mm</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total sample size</td>
<td>7</td>
<td>17</td>
<td>38</td>
<td>16</td>
<td>5</td>
<td>17</td>
<td>4</td>
<td>81</td>
</tr>
<tr>
<td>Number of escallops per 60 minutes diving</td>
<td>10</td>
<td>30</td>
<td>76</td>
<td>32</td>
<td>6</td>
<td>27</td>
<td>8</td>
<td>180</td>
</tr>
</tbody>
</table>

TABLE 2. Shell height and numbers of rings on the shell of swimming and non-swimming escallops collected at Inishdagilmore.

<table>
<thead>
<tr>
<th>Shell height mm</th>
<th>Swimming</th>
<th>Not swimming</th>
<th>Number of rings</th>
<th>Swimming</th>
<th>Not swimming</th>
</tr>
</thead>
<tbody>
<tr>
<td>75—79</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>80—84</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>85—89</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>90—94</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>95—99</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>100—104</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>105—109</td>
<td>4</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>110—114</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>115—119</td>
<td>2</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>120—124</td>
<td>2</td>
<td>5</td>
<td>11</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>125—129</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>130—134</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>135—139</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>140—144</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>—</td>
</tr>
</tbody>
</table>
IRISH FISHERIES INVESTIGATIONS SERIES B (MARINE).

1967. 1. (1) Stocks of *Nephrops norvegicus* off the south coast of Ireland.
 F. A. Gibson, Ph.D.
 (2) Irish investigations on the lobster (*Homarus vulgarus* Edw.).
 F. A. Gibson, Ph.D.

2. Irish sprats and sandeels.
 John Molloy, B.Sc.

3. Notes on some Irish estuarine and inshore fishes.
 J. Bracken, Ph.D., and M. Kennedy, Ph.D. (with records of the distribution of shads by Eileen Twomey, M.Sc.).

1968. 4. The whiting fishery off Counties Dublin and Louth on the east coast of Ireland.
 J. P. Hillis.

1969. 5. (1) Pelagic eggs and young stages of fishes taken on the south coast of Ireland in 1967.
 M. Kennedy and P. Fitzmaurice.
 (2) Age, growth and maturity of Irish lobsters.
 F. A. Gibson.

 John Molloy, B.Sc.

1971. 7. (1) The whiting fisheries off Counties Dublin and Louth on the east coast of Ireland.
 J. P. Hillis.
 (2) Research vessel investigations.
 J. P. Hillis.

 M. Kennedy and T. Champ.

 M. Kennedy, P. Fitzmaurice and T. Champ.

10. The distribution and abundance of animals and plants on the rocky shores of Bantry Bay.
 G. B. Crapp, Ph.D.

 Michael D. Guiry, M.Sc.

12. Size distribution and food of Thornback Ray (*Raja clavata* L.) caught on rod and line on the Mayo coast.
 P. Fitzmaurice.

13. A diving study on Dublin Bay prawns *Nephrops norvegicus* (L.) and their burrows off the east coast of Ireland.
 J. P. Hillis.

14. Field observations on larvae of the Dublin Bay prawn *Nephrops norvegicus* (L.) in the western Irish Sea.
 J. P. Hillis.

15. Laboratory experiments on pumping and filtration in *Mytilus edulis* L. using suspensions of colloidal graphite.
 J. H. Wilson and R. Seed.

 J. H. Wilson and R. Seed.

 J. P. Hillis.

 B. Ottway, M. Parker, D. McGrath, M. Crowley.

19. The exploitation of grey mullet *Chelon labrosus* (Risso) in the south east of Ireland.
 E. Fahy.

20. The cockle *Cerastoderma edule* (L.) on the South Bull, Dublin Bay: population parameters and fishery potential.
 A. B. West, J. K. Partridge and A. Lovitt.

21. Laboratory investigations into the absorption of dissolved free amino acids by the gill of the mussel *Mytilus edulis* L.
 A. J. Elliott.

1981. 23. The rocky shore biology of Bantry Bay—a re-survey.

 M. D. Barry.

 Dan Minchin and F. Mathers.

Irish Fisheries Investigations Series A (Freshwater) deals with scientific research into all aspects of freshwater fisheries.